User interface language: English | Español

HL Paper 1

The first term in an arithmetic sequence is 4 and the fifth term is log2625.

Find the common difference of the sequence, expressing your answer in the form log2p, where p.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

u5=4+4d=log2625      (A1)

4d=log2625-4

attempt to write an integer (eg 4 or 1) in terms of log2        M1

4d=log2625-log216

attempt to combine two logs into one        M1

4d=log262516

d=14log262516

attempt to use power rule for logs        M1

d=log26251614

d=log252       A1


[5 marks]


Note: Award method marks in any order.

Examiners report

[N/A]



Consider the integral  1 t 1 x + x 2   d x for  t > 1 .

Very briefly, explain why the value of this integral must be negative.

[1]
a.

Express the function  f ( x ) = 1 x + x 2 in partial fractions.

[6]
b.

Use parts (a) and (b) to show that ln ( 1 + t ) ln t < ln 2 .

[4]
c.

Markscheme

The numerator is negative but the denominator is positive. Thus the integrand is negative and so the value of the integral will be negative.     R1AG

[1 mark]

a.

1 x + x 2 = 1 ( 1 + x ) x A 1 + x + B x      M1M1A1

1 A x + B ( 1 + x ) A = 1 , B = 1      M1A1

1 x + x 2 1 1 + x + 1 x      A1

[6 marks]

b.

1 t 1 1 + x + 1 x d x = [ ln ( 1 + x ) ln x ] 1 t = ln ( 1 + t ) ln t ln 2     M1A1A1

Hence  ln ( 1 + t ) ln t ln 2 < 0 ln ( 1 + t ) ln t < ln 2      R1AG

[4 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.



Three planes have equations:

2 x y + z = 5

x + 3 y z = 4      , where  a b R .

3 x 5 y + a z = b

Find the set of values of a and b such that the three planes have no points of intersection.

Markscheme

attempt to eliminate a variable (or attempt to find det A )       M1

( 2 1 1 1 3 1 3 5 a | 5 4 b ) ( 2 1 1 0 7 3 0 14 a + 3 | 5 3 b 12 )   (or det  A = 14 ( a 3 ) )

(or two correct equations in two variables)       A1

( 2 1 1 0 7 3 0 0 a 3 | 5 3 b 6 )   (or solving det  A = 0 )

(or attempting to reduce to one variable, e.g.  ( a 3 ) z = b 6 )       M1

a = 3 b 6        A1A1

[5 marks]

Examiners report

[N/A]



Consider the equation z-13=i, z. The roots of this equation are ω1ω2 and ω3, where Imω2>0 and Imω3<0.

The roots ω1, ω2 and ω3 are represented by the points A, B and C respectively on an Argand diagram.

Consider the equation z-13=iz3, z.

Verify that ω1=1+eiπ6 is a root of this equation.

[2]
a.i.

Find ω2 and ω3, expressing these in the form a+eiθ, where a and θ>0.

[4]
a.ii.

Plot the points A, B and C on an Argand diagram.

[4]
b.

Find AC.

[3]
c.

By using de Moivre’s theorem, show that α=11-eiπ6 is a root of this equation.

[3]
d.

Determine the value of Reα.

[6]
e.

Markscheme

1+eiπ6-13

=eiπ63                   A1

=eiπ2                  A1

=cosπ2+isinπ2

=i                  AG

 

Note: Candidates who solve the equation correctly can be awarded the above two marks. The working for part (i) may be seen in part (ii).

 

[2 marks]

a.i.

z-13=eiπ2+2πk                  (M1)

z-1=eiπ6+4πk6                  (M1)

k=1ω2=1+ei5π6                  A1

k=2ω3=1+ei9π6                  A1

 

[4 marks]

a.ii.

EITHER

attempt to express eiπ6ei5π6ei9π6 in Cartesian form and translate 1 unit in the positive direction of the real axis                  (M1)


OR

attempt to express w1w2 and w3 in Cartesian form                  (M1)


THEN

Note: To award A marks, it is not necessary to see AB or C, the w1, or the solid lines

                  A1A1A1

 

[4 marks]

b.

valid attempt to find ω1-ω3 or ω3-ω1                     M1

ω1-ω3=1+32+12i-1-i=32+32i  OR  cosπ6+isinπ6+isinπ2

valid attempt to find 32+32i                     M1

=34+94

AC=3                     A1

 

[3 marks]

c.

METHOD 1

z-13=iz3z-1z3=i                     M1

z-1z3=eiπ2                     A1

α-1α=eiπ6                     A1


Note:
This step to change from z to α may occur at any point in MS.


α-1=αeiπ6

α-αeiπ6=1

α1-eiπ6=1

α=11-eiπ6                     AG

 

METHOD 2

z-13=iz3z-1z3=i                     M1

1-1z3=eiπ2                     A1

1-1z=eiπ6                     A1


Note:
 This step to change from z to α may occur at any point in MS.


1-eiπ6=1α

α=11-eiπ6                     AG

 

METHOD 3

LHS=z-13=11-eiπ6-13

=eiπ61-eiπ63

=i1-eiπ63 =i52-332+i332-52                      M1A1


Note: Award M1 for applying de Moivre’s theorem (may be seen in modulus- argument form.)


RHS=iz3=i11-eiπ63

=i1-eiπ63                     A1

 z-13=iz3                     AG

 

METHOD 4

z-13=iz3

z3-3z2+3z-1=iz3

1-iz3-3z2+3z-1=0                     (M1)

1-i11-eiπ63-311-eiπ62+311-eiπ6-1

=1-i-31-eiπ6+31-eiπ62-1-eiπ63                     (A1)

=1-i-31-eiπ6+31-2eiπ6+eiπ3-1-3eiπ6+3eiπ3-eiπ2                     A1

=0                     AG


Note: If the candidate does not interpret their conclusion, award (M1)(A1)A0 as appropriate.

 

[3 marks]

d.

METHOD 1

11-eiπ6=11-cosπ6+isinπ6                    M1

=22-3-i                     A1

attempt to use conjugate to rationalise                    M1

=4-23+2i2-32+1                     A1

=4-23+2i8-43                     A1

=12+14-23i

Reα=12                     A1


Note: Their final imaginary part does not have to be correct in order for the final three A marks to be awarded

 

METHOD 2

11-eiπ6=11-cosπ6+isinπ6                    M1

attempt to use conjugate to rationalise                    M1

=11-cosπ6-isinπ6×1-cosπ6+isinπ61-cosπ6+isinπ6                     A1

=1-cosπ6+isinπ61-cosπ62+sin2π6                     A1

=1-cosπ6+isinπ61-2cosπ6+cos2π6+sin2π6

=1-cosπ6+isinπ62-2cosπ6                     A1

=12+isinπ62-2cosπ6

Reα=12                     A1


Note: Their final imaginary part does not have to be correct in order for the final three A marks to be awarded

 

METHOD 3

attempt to multiply through by -e-iπ12e-iπ12                    M1

11-eiπ6=-e-iπ12eiπ12-e-iπ12                     A1

attempting to re-write in r-cis form                    M1

=-cos-π12+isin-π12cosπ12+isinπ12-cos-π12+isin-π12                     A1

=-cosπ12-isinπ122isinπ12                     A1

=12-12icotπ12 =12+12icotπ12

Reα=12                     A1

 

METHOD 4

attempt to multiply through by 1-e-iπ61-e-iπ6                    M1

11-eiπ6=1-e-iπ61-e-iπ6-eiπ6+1                     A1

attempting to re-write in r-cis form                    M1

=1-cosπ6-isinπ62-2cosπ6                    A1

attempt to re-write in Cartesian form                    M1

=1-32-12i2-3 =2-322-3+i122-3

Reα=12                     A1


Note: Their final imaginary part does not have to be correct in order for the final A mark to be awarded

 

[6 marks]

e.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.



Consider  w = 2 ( cos π 3 + i sin π 3 )

These four points form the vertices of a quadrilateral, Q.

Express w2 and w3 in modulus-argument form.

[3]
a.i.

Sketch on an Argand diagram the points represented by w0 , w1 , w2 and w3.

[2]
a.ii.

Show that the area of the quadrilateral Q is  21 3 2 .

[3]
b.

Let z = 2 ( cos π n + i sin π n ) , n Z + . The points represented on an Argand diagram by  z 0 , z 1 , z 2 , , z n  form the vertices of a polygon  P n .

Show that the area of the polygon  P n  can be expressed in the form  a ( b n 1 ) sin π n , where  a , b R .

[6]
c.

Markscheme

w 2 = 4 cis ( 2 π 3 ) ; w 3 = 8 cis ( π )      (M1)A1A1

Note: Accept Euler form.

Note: M1 can be awarded for either both correct moduli or both correct arguments.

Note: Allow multiplication of correct Cartesian form for M1, final answers must be in modulus-argument form.

[3 marks]

a.i.

     A1A1

[2 marks]

a.ii.

use of area =  1 2 a b sin C      M1

1 2 × 1 × 2 × sin π 3 + 1 2 × 2 × 4 × sin π 3 + 1 2 × 4 × 8 × sin π 3       A1A1

Note: Award A1 for  C = π 3 , A1 for correct moduli.

= 21 3 2      AG

Note: Other methods of splitting the area may receive full marks.

[3 marks]

b.

1 2 × 2 0 × 2 1 × sin π n + 1 2 × 2 1 × 2 2 × sin π n + 1 2 × 2 2 × 2 3 × sin π n + + 1 2 × 2 n 1 × 2 n × sin π n       M1A1

Note: Award M1 for powers of 2, A1 for any correct expression including both the first and last term.

= sin π n × ( 2 0 + 2 2 + 2 4 + + 2 n 2 )

identifying a geometric series with common ratio 22(= 4)     (M1)A1

= 1 2 2 n 1 4 × sin π n      M1

Note: Award M1 for use of formula for sum of geometric series.

= 1 3 ( 4 n 1 ) sin π n      A1

[6 marks]

c.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.
[N/A]
c.



Consider the series lnx+plnx+13lnx+, where x, x>1 and p, p0.

Consider the case where the series is geometric.

Now consider the case where the series is arithmetic with common difference d.

Show that p=±13.

[2]
a.i.

Hence or otherwise, show that the series is convergent.

[1]
a.ii.

Given that p>0 and S=3+3, find the value of x.

[3]
a.iii.

Show that p=23.

[3]
b.i.

Write down d in the form klnx, where k.

[1]
b.ii.

The sum of the first n terms of the series is ln1x3.

Find the value of n.

[8]
b.iii.

Markscheme

EITHER

attempt to use a ratio from consecutive terms        M1

plnxlnx=13lnxplnx  OR  13lnx=lnxr2  OR  plnx=lnx13p

 

Note: Candidates may use lnx1+lnxp+lnx13+ and consider the powers of x in geometric sequence

Award M1 for p1=13p.


OR

r=p  and  r2=13        M1


THEN

p2=13  OR  r=±13          A1

p=±13          AG

 

Note: Award M0A0 for r2=13 or p2=13 with no other working seen.

 

[2 marks]

a.i.

EITHER

since, p=13 and 13<1          R1


OR

since, p=13 and -1<p<1          R1


THEN

 the geometric series converges.          AG


Note: Accept r instead of p.
Award R0 if both values of p not considered.

 

[1 mark]

a.ii.

lnx1-13  =3+3           (A1)

lnx=3-33+3-33  OR  lnx=3-3+3-1  lnx=2          A1

x=e2          A1

 

[3 marks]

a.iii.

METHOD 1

attempt to find a difference from consecutive terms or from u2          M1

correct equation          A1

plnx-lnx=13lnx-plnx  OR  13lnx=lnx+2plnx-lnx


Note:
Candidates may use lnx1+lnxp+lnx13+ and consider the powers of x in arithmetic sequence.

Award M1A1 for p-1=13-p

 

2plnx=43lnx  2p=43          A1

p=23          AG

 

METHOD 2

attempt to use arithmetic mean u2=u1+u32          M1

plnx=lnx+13lnx2          A1

2plnx=43lnx  2p=43          A1

p=23          AG

 

METHOD 3

attempt to find difference using u3          M1

13lnx=lnx+2d  d=-13lnx

 

u2=lnx+1213lnx-lnx  OR  plnx-lnx=-13lnx          A1

plnx=23lnx          A1

p=23          AG

 

[3 marks]

b.i.

d=-13lnx       A1

 

[1 mark]

b.ii.

METHOD 1

Sn=n22lnx+n-1×-13lnx

attempt to substitute into Sn and equate to ln1x3           (M1)

n22lnx+n-1×-13lnx=ln1x3

ln1x3=-lnx3=lnx-3           (A1)

=-3lnx           (A1)

correct working with Sn (seen anywhere)           (A1)

n22lnx-n3lnx+13lnx  OR  nlnx-nn-16lnx  OR  n2lnx+4-n3lnx

correct equation without lnx          A1

n273-n3=-3  OR  n-nn-16=-3 or equivalent


Note:
Award as above if the series 1+p+13+ is considered leading to n273-n3=-3.


attempt to form a quadratic =0           (M1)

n2-7n-18=0

attempt to solve their quadratic           (M1)

n-9n+2=0

n=9          A1

 

METHOD 2

ln1x3=-lnx3=lnx-3           (A1)

=-3lnx           (A1)

listing the first 7 terms of the sequence           (A1)

lnx+23lnx+13lnx+0-13lnx-23lnx-lnx+

recognizing first 7 terms sum to 0           M1

8th term is -43lnx           (A1)

9th term is -53lnx           (A1)

sum of 8th and 9th term =-3lnx           (A1)

n=9          A1

 

[8 marks]

b.iii.

Examiners report

Part (a)(i) was well done with few candidates incorrectly using the value of p to verify rather than to 'show' the given result. In part (a)(ii) most did not consider both values of r and some did know the condition for convergence of a geometric series. Part (a)(iii) was generally well done but some had difficulty in simplifying the surd. Part (b) (i) and (ii) was generally well done. Although many completely correct answers to part b (iii) were noted, weaker candidates often made errors in properties of logarithms or algebraic manipulation leading to an incorrect quadratic equation.

a.i.
[N/A]
a.ii.
[N/A]
a.iii.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
b.iii.



Determine the roots of the equation ( z + 2 i ) 3 = 216 i , z C , giving the answers in the form z = a 3 + b i where a ,   b Z .

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

METHOD 1

216 i = 216 ( cos π 2 + i sin π 2 )     A1

z + 2 i = 216 3 ( cos ( π 2 + 2 π k ) = i sin ( π 2 + 2 π k ) ) 1 3     (M1)

z + 2 i = 6 ( cos ( π 6 + 2 π k 3 ) + i sin ( π 6 + 2 π k 3 ) )     A1

z 1 + 2 i = 6 ( cos π 6 + i sin π 6 ) = 6 ( 3 2 + i 2 ) = 3 3 + 3 i

z 2 + 2 i = 6 ( cos 5 π 6 + i sin 5 π 6 ) = 6 ( 3 2 + i 2 ) = 3 3 + 3 i

z 3 + 2 i = 6 ( cos 3 π 2 + i sin 3 π 2 ) = 6 i     A2

 

Note:     Award A1A0 for one correct root.

 

so roots are z 1 = 3 3 + i,  z 2 = 3 3 + i and z 3 = 8 i     M1A1

 

Note:     Award M1 for subtracting 2i from their three roots.

 

METHOD 2

( a 3 + ( b + 2 ) i ) 3 = 216 i

( a 3 ) 3 + 3 ( a 3 ) 2 ( b + 2 ) i 3 ( a 3 ) ( b + 2 ) 2 i ( b + 2 ) 3 = 216 i     M1A1

( a 3 ) 3 3 ( a 3 ) ( b + 2 ) 2 + i ( 3 ( a 3 ) 2 ( b + 2 ) ( b + 2 ) 3 ) = 216 i

( a 3 ) 3 3 ( a 3 ) ( b + 2 ) 2 = 0 and 3 ( a 3 ) 2 ( b + 2 ) ( b + 2 ) 3 = 216     M1A1

a ( a 2 ( b + 2 ) 2 ) = 0 and 9 a 2 ( b + 2 ) ( b + 2 ) 3 = 216

a = 0 or a 2 = ( b + 2 ) 2

if a = 0 ,   ( b + 2 ) 3 = 216 b + 2 = 6

b = 8     A1

( a ,   b ) = ( 0 ,   8 )

if a 2 = ( b + 2 ) 2 ,   9 ( b + 2 ) 2 ( b + 2 ) ( b + 2 ) 3 = 216

8 ( b + 2 ) 3 = 216

( b + 2 ) 3 = 27

b + 2 = 3

b = 1

a 2 = 9 a = ± 3

( a ,   b ) = ( ± 3 ,   1 )     A1A1

so roots are z 1 = 3 3 + i,  z 2 = 3 3 + i and z 3 = 8 i

 

METHOD 3

( z + 2 i ) 3 ( 6 i ) 3 = 0

attempt to factorise:     M1

( ( z + 2 i ) ( 6 i ) ) ( ( z + 2 i ) 2 + ( z + 2 i ) ( 6 i ) + ( 6 i ) 2 ) = 0     A1

( z + 8 i ) ( z 2 2 i z 28 ) = 0     A1

z + 8 i = 0 z = 8 i     A1

z 2 2 i z 28 = 0 z = 2 i ± 4 ( 4 × 1 × 28 ) 2     M1

z = 2 i ± 108 2

z = 2 i ± 6 3 2

z = i ± 3 3     A1A1

 

Special Case:

Note:     If a candidate recognises that 216 i 3 = 6 i (anywhere seen), and makes no valid progress in finding three roots, award A1 only.

 

[7 marks]

Examiners report

[N/A]



Consider  f ( x ) = 2 x 4 x 2 1 1 < x < 1 .

For the graph of  y = f ( x ) ,

Find  f ( x ) .

[2]
a.i.

Show that, if  f ( x ) = 0 , then  x = 2 3 .

[3]
a.ii.

find the coordinates of the y -intercept.

[1]
b.i.

show that there are no x -intercepts.

[2]
b.ii.

sketch the graph, showing clearly any asymptotic behaviour.

[2]
b.iii.

Show that 3 x + 1 1 x 1 = 2 x 4 x 2 1 .

[2]
c.

The area enclosed by the graph of y = f ( x ) and the line y = 4 can be expressed as ln v . Find the value of v .

[7]
d.

Markscheme

attempt to use quotient rule (or equivalent)       (M1)

f ( x ) = ( x 2 1 ) ( 2 ) ( 2 x 4 ) ( 2 x ) ( x 2 1 ) 2        A1

= 2 x 2 + 8 x 2 ( x 2 1 ) 2

[2 marks]

a.i.

f ( x ) = 0

simplifying numerator (may be seen in part (i))       (M1)

x 2 4 x + 1 = 0  or equivalent quadratic equation       A1

 

EITHER

use of quadratic formula

x = 4 ± 12 2        A1

 

OR

use of completing the square

( x 2 ) 2 = 3        A1

 

THEN

x = 2 3   (since  2 + 3  is outside the domain)       AG

 

Note: Do not condone verification that x = 2 3 f ( x ) = 0 .

Do not award the final A1 as follow through from part (i).

 

[3 marks]

a.ii.

(0, 4)       A1

[1 mark]

b.i.

2 x 4 = 0 x = 2       A1

outside the domain       R1

[2 marks]

b.ii.

      A1A1

award A1 for concave up curve over correct domain with one minimum point in the first quadrant
award A1 for approaching x = ± 1 asymptotically

[2 marks]

b.iii.

valid attempt to combine fractions (using common denominator)      M1

3 ( x 1 ) ( x + 1 ) ( x + 1 ) ( x 1 )       A1

= 3 x 3 x 1 x 2 1

= 2 x 4 x 2 1       AG

[2 marks]

c.

f ( x ) = 4 2 x 4 = 4 x 2 4       M1

       ( x = 0   or)   x = 1 2       A1

 

area under the curve is  0 1 2 f ( x ) d x       M1

= 0 1 2 3 x + 1 1 x 1 d x

Note: Ignore absence of, or incorrect limits up to this point.

 

= [ 3 ln | x + 1 | ln | x 1 | ] 0 1 2       A1

= 3 ln 3 2 ln 1 2 ( 0 )

= ln 27 4       A1

area is  2 0 1 2 f ( x ) d x   or  0 1 2 4 d x 0 1 2 f ( x ) d x       M1

= 2 ln 27 4

= ln 4 e 2 27       A1

( v = 4 e 2 27 )

 

[7 marks]

d.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
b.iii.
[N/A]
c.
[N/A]
d.



A farmer has six sheep pens, arranged in a grid with three rows and two columns as shown in the following diagram.

Five sheep called Amber, Brownie, Curly, Daisy and Eden are to be placed in the pens. Each pen is large enough to hold all of the sheep. Amber and Brownie are known to fight.

Find the number of ways of placing the sheep in the pens in each of the following cases:

Each pen is large enough to contain five sheep. Amber and Brownie must not be placed in the same pen.

[4]
a.

Each pen may only contain one sheep. Amber and Brownie must not be placed in pens which share a boundary.

[4]
b.

Markscheme

METHOD 1

B has one less pen to select         (M1)


EITHER

A and B can be placed in 6×5 ways        (A1)

C, D, E have 6 choices each        (A1)


OR

A (or B), C, D, E have 6 choices each        (A1)

B (or A) has only 5 choices        (A1)


THEN

5×64 =6480            A1

 

METHOD 2

total number of ways =65        (A1)

number of ways with Amber and Brownie together =64        (A1)

attempt to subtract (may be seen in words)        (M1)

65-64

=5×64 =6480          A1

 

[4 marks]

a.

METHOD 1

total number of ways =6!(=720)        (A1)

number of ways with Amber and Brownie sharing a boundary

      =2×7×4!(=336)        (A1)

attempt to subtract (may be seen in words)        (M1)

720-336=384          A1

 

METHOD 2

case 1: number of ways of placing A in corner pen

3×4×3×2×1

Four corners total no of ways is 4×(3×4×3×2×1)=12×4!(=288)        (A1)

case 2: number of ways of placing A in the middle pen

2×4×3×2×1

two middle pens so 2×(2×4×3×2×1)=4×4!(=96)        (A1)

attempt to add (may be seen in words)        (M1)

total no of ways =288+96

=16×4!(=384)          A1

 

[4 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.



Two distinct lines, l 1 and l 2 , intersect at a point P . In addition to P , four distinct points are marked out on l 1 and three distinct points on l 2 . A mathematician decides to join some of these eight points to form polygons.

The line l 1 has vector equation r1 = ( 1 0 1 ) + λ ( 1 2 1 ) λ R  and the line l 2 has vector equation r2  = ( 1 0 2 ) + μ ( 5 6 2 ) μ R .

The point P has coordinates (4, 6, 4).

The point A has coordinates (3, 4, 3) and lies on l 1 .

The point B has coordinates (−1, 0, 2) and lies on l 2 .

Find how many sets of four points can be selected which can form the vertices of a quadrilateral.

[2]
a.i.

Find how many sets of three points can be selected which can form the vertices of a triangle.

[4]
a.ii.

Verify that P is the point of intersection of the two lines.

[3]
b.

Write down the value of λ corresponding to the point A .

[1]
c.

Write down PA and PB .

[2]
d.

Let C be the point on l 1 with coordinates (1, 0, 1) and D be the point on l 2 with parameter μ = 2 .

Find the area of the quadrilateral CDBA .

[8]
e.

Markscheme

appreciation that two points distinct from P need to be chosen from each line   M1

4 C 2 × 3 C 2

=18    A1

[2 marks]

a.i.

EITHER

consider cases for triangles including P or triangles not including P       M1

3 × 4 + 4 × 3 C 2 + 3 × 4 C 2      (A1)(A1)

Note: Award A1 for 1st term, A1 for 2nd & 3rd term.

OR

consider total number of ways to select 3 points and subtract those with 3 points on the same line      M1

8 C 3 5 C 3 4 C 3      (A1)(A1)

Note: Award A1 for 1st term, A1 for 2nd & 3rd term.

56−10−4

THEN

= 42    A1

[4 marks]

a.ii.

METHOD 1

substitution of (4, 6, 4) into both equations       (M1)

λ = 3 and  μ = 1        A1A1

(4, 6, 4)       AG

METHOD 2

attempting to solve two of the three parametric equations      M1

λ = 3 and  μ = 1        A1

check both of the above give (4, 6, 4)       M1AG

Note: If they have shown the curve intersects for all three coordinates they only need to check (4,6,4) with one of " λ " or " μ ".

[3 marks]

b.

λ = 2       A1

[1 mark]

c.

PA = ( 1 2 1 ) ,   PB = ( 5 6 2 )     A1A1

Note: Award A1A0 if both are given as coordinates.

[2 marks]

d.

METHOD 1

area triangle  ABP = 1 2 | PB × PA |     M1

( = 1 2 | ( 5 6 2 ) × ( 1 2 1 ) | ) = 1 2 | ( 2 3 4 ) |     A1

= 29 2     A1

EITHER

PC = 3 PA PD = 3 PB        (M1)

area triangle  PCD = 9 ×  area triangle ABP        (M1)A1

= 9 29 2     A1

OR

D  has coordinates (−11, −12, −2)    A1

area triangle  PCD = 1 2 | PD × PC | = 1 2 | ( 15 18 6 ) × ( 3 6 3 ) |     M1A1

Note: A1 is for the correct vectors in the correct formula.

= 9 29 2     A1

THEN

area of  CDBA = 9 29 2 29 2

= 4 29     A1

 

METHOD 2

D  has coordinates (−11, −12, −2)    A1

area  = 1 2 | CB × CA | + 1 2 | BC × BD |       M1

Note: Award M1 for use of correct formula on appropriate non-overlapping triangles.

Note: Different triangles or vectors could be used.

CB = ( 2 0 1 ) CA = ( 2 4 2 )     A1

CB × CA = ( 4 6 8 )     A1

BC = ( 2 0 1 ) BD = ( 10 12 4 )     A1

BC × BD = ( 12 18 24 )     A1

Note: Other vectors which might be used are  DA = ( 14 16 5 ) BA = ( 4 4 1 ) DC = ( 12 12 3 ) .

Note: Previous A1A1A1A1 are all dependent on the first M1.

valid attempt to find a value of  1 2 | a × b |       M1

Note: M1 independent of triangle chosen.

area  = 1 2 × 2 × 29 + 1 2 × 6 × 29

= 4 29     A1

Note: accept  1 2 116 + 1 2 1044 or equivalent.

 

[8 marks]

e.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.



Use the method of mathematical induction to prove that 4 n + 15 n 1 is divisible by 9 for n Z + .

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

let P ( n ) be the proposition that 4 n + 15 n 1 is divisible by 9

showing true for n = 1      A1

ie for n = 1 ,   4 1 + 15 × 1 1 = 18

which is divisible by 9, therefore P ( 1 ) is true

assume P ( k ) is true so 4 k + 15 k 1 = 9 A ,   ( A Z + )      M1

 

Note:     Only award M1 if “truth assumed” or equivalent.

 

consider 4 k + 1 + 15 ( k + 1 ) 1

= 4 × 4 k + 15 k + 14

= 4 ( 9 A 15 k + 1 ) + 15 k + 14      M1

= 4 × 9 A 45 k + 18      A1

= 9 ( 4 A 5 k + 2 ) which is divisible by 9     R1

 

Note:     Award R1 for either the expression or the statement above.

 

since P ( 1 ) is true and P ( k ) true implies P ( k + 1 ) is true, therefore (by the principle of mathematical induction) P ( n ) is true for n Z +      R1

 

Note:     Only award the final R1 if the 2 M1s have been awarded.

 

[6 marks]

Examiners report

[N/A]



In the following Argand diagram, the points Z1, O and Z2 are the vertices of triangle Z1OZ2 described anticlockwise.

The point Z1 represents the complex number z1=r1eiα, where r1>0. The point Z2 represents the complex number z2=r2eiθ, where r2>0.

Angles α, θ are measured anticlockwise from the positive direction of the real axis such that 0α, θ<2π and 0<α-θ<π.

In parts (c), (d) and (e), consider the case where Z1OZ2 is an equilateral triangle.

Let z1 and z2 be the distinct roots of the equation z2+az+b=0 where z and a, b.

Show that z1z2=r1r2eiα-θ where z2 is the complex conjugate of z2.

[2]
a.

Given that Rez1z2=0, show that Z1OZ2 is a right-angled triangle.

[2]
b.

Express z1 in terms of z2.

[2]
c.i.

Hence show that z12+z22=z1z2.

[4]
c.ii.

Use the result from part (c)(ii) to show that a2-3b=0.

[5]
d.

Consider the equation z2+az+12=0, where z and a.

Given that 0<α-θ<π, deduce that only one equilateral triangle Z1OZ2 can be formed from the point O and the roots of this equation.

[3]
e.

Markscheme

z2=r2e-iθ          (A1)

z1z2=r1eiαr2e-iθ           A1

z1z2=r1r2eiα-θ           AG


Note: Accept working in modulus-argument form

 

[2 marks]

a.

Rez1z2=r1r2cosα-θ  =0           A1

α-θ=arcos0  r1,r2>0

α-θ=π2  (as 0<α-θ<π)           A1

so Z1OZ2 is a right-angled triangle           AG

 

[2 marks]

b.

EITHER

z1z2=r1r2eiα-θ=eiπ3  (since r1=r2)            (M1)


OR

z1=r2eiθ+π3  =r2eiθeiπ3            (M1)


THEN

z1=z2eiπ3           A1

 

Note: Accept working in either modulus-argument form to obtain z1=z2cosπ3+isinπ3 or in Cartesian form to obtain z1=z212+32i.

 

[2 marks]

c.i.

substitutes z1=z2eiπ3 into z12+z22             M1

z12+z22=z22ei2π3+z22  =z22ei2π3+1             A1

 

EITHER

ei2π3+1=eiπ3             A1


OR

z22ei2π3+1=z22-12+32i+1

=z2212+32i             A1

 

THEN

z12+z22=z22eiπ3

=z2z2eiπ3  and  z2eiπ3=z1             A1

so z12+z22=z1z2             AG

 

Note: For candidates who work on the LHS and RHS separately to show equality, award M1A1 for z12+z22=z22ei2π3+z22  =z22ei2π3+1, A1 for z1z2=z22eiπ3 and A1 for ei2π3+1=eiπ3. Accept working in either modulus-argument form or in Cartesian form.

 

[4 marks]

c.ii.

METHOD 1

z1+z2=-a  and  z1z2=b              (A1)

a2=z12+z22+2z1z2             A1

a2=2z1z2+z1z2=3z1z2             A1

substitutes b=z1z2 into their expression             M1

a2=2b+b  OR  a2=3b             A1


Note: If z1+z2=-a is not clearly recognized, award maximum (A0)A1A1M1A0.

 

so a2-3b=0              AG

 

METHOD 2

z1+z2=-a  and  z1z2=b              (A1)

z1+z22=z12+z22+2z1z2             A1

z1+z22=2z1z2+z1z2=3z1z2             A1

substitutes b=z1z2 and z1+z2=-a into their expression              M1

a2=2b+b  OR  a2=3b             A1


Note: If z1+z2=-a is not clearly recognized, award maximum (A0)A1A1M1A0.


so a2-3b=0              AG

 

[5 marks]

d.

a2-3×12=0

a=±6  z2±6z+12=0             A1

for a=-6:

z1=3+3i, z2=3-3i  and  α-θ=-5π3  which does not satisfy 0<α-θ<π             R1

for a=6:

z1=-3-3i, z2=-3+3i  and  α-θ=π3             A1

so (for 0<α-θ<π), only one equilateral triangle can be formed from point O and the two roots of this equation             AG

 

[3 marks]

e.

Examiners report

The vast majority of candidates scored full marks in parts (a) and (b). If they did not, it was normally due to the lack of rigour in setting out of the answer to a "show that" question. Part (c) was, though, more often than not poorly done. Many candidates could not use the given condition (equilateral triangle) to find z1 in terms of z2. Part (d) was well answered by a rather high number of candidates.

Only a handful of students made good progress in (e), not even finding the possible values for a.

a.
[N/A]
b.
[N/A]
c.i.
[N/A]
c.ii.
[N/A]
d.
[N/A]
e.



Consider the following system of equations where a R .

2 x + 4 y z = 10

x + 2 y + a z = 5

5 x + 12 y = 2 a .

Find the value of a for which the system of equations does not have a unique solution.

[2]
a.

Find the solution of the system of equations when a = 2 .

[5]
b.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

an attempt at a valid method eg by inspection or row reduction       (M1)

2 × R 2 = R 1 2 a = 1

a = 1 2       A1

 

[2 marks]

a.

using elimination or row reduction to eliminate one variable      (M1)

correct pair of equations in 2 variables, such as

5 x + 10 y = 25 5 x + 12 y = 4 }       A1

Note: Award A1 for z = 0 and one other equation in two variables.

 

attempting to solve for these two variables      (M1)

x = 26 y = 10.5 ,   z = 0       A1A1

Note: Award A1A0 for only two correct values, and A0A0 for only one.

Note: Award marks in part (b) for equivalent steps seen in part (a).

 

[5 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.



A team of four is to be chosen from a group of four boys and four girls.

Find the number of different possible teams that could be chosen.

[3]
a.

Find the number of different possible teams that could be chosen, given that the team must include at least one girl and at least one boy.

[2]
b.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

METHOD 1

( 8 4 )        (A1)

= 8 ! 4 ! 4 ! = 8 × 7 × 6 × 5 4 × 3 × 2 × 1 = 7 × 2 × 5        (M1)

= 70       A1

 

METHOD 2

recognition that they need to count the teams with 0 boys, 1 boy… 4 boys      M1

1 + ( 4 1 ) × ( 4 3 ) + ( 4 2 ) × ( 4 2 ) + ( 4 1 ) × ( 4 3 ) + 1

= 1 + ( 4 × 4 ) + ( 6 × 6 ) + ( 4 × 4 ) + 1       (A1)

= 70       A1

 

[3 marks]

a.

EITHER

recognition that the answer is the total number of teams minus the number of teams with all girls or all boys     (M1)

70 − 2

OR

recognition that the answer is the total of the number of teams with 1 boy,

2 boys, 3 boys        (M1)

 

( 4 1 ) × ( 4 3 ) + ( 4 2 ) × ( 4 2 ) + ( 4 1 ) × ( 4 3 ) = ( 4 × 4 ) + ( 6 × 6 ) + ( 4 × 4 )

THEN

= 68         A1

 

[2 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.



Find the solution of log 2 x log 2 5 = 2 + log 2 3 .

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

log 2 x log 2 5 = 2 + log 2 3

collecting at least two log terms     (M1)

eg log 2 x 5 = 2 + log 2 3  or  log 2 x 15 = 2

obtaining a correct equation without logs     (M1)

eg x 5 = 12 OR x 15 = 2 2      (A1)

x = 60      A1

[4 marks]

Examiners report

[N/A]



Let S be the sum of the roots found in part (a).

Find the roots of  z 24 = 1 which satisfy the condition 0 < arg ( z ) < π 2 , expressing your answers in the form r e i θ , where r , θ R + .

[5]
a.

Show that Re S = Im S.

[4]
b.i.

By writing  π 12 as ( π 4 π 6 ) , find the value of cos  π 12 in the form a + b c , where a b and  c are integers to be determined.

[3]
b.ii.

Hence, or otherwise, show that S = 1 2 ( 1 + 2 ) ( 1 + 3 ) ( 1 + i ) .

[4]
b.iii.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

( r ( cos θ + i sin θ ) ) 24 = 1 ( cos 0 + i sin 0 )

use of De Moivre’s theorem       (M1)

r 24 = 1 r = 1       (A1)

24 θ = 2 π n θ = π n 12 ( n Z )       (A1)

0 < arg ( z ) < π 2 n = 1, 2, 3, 4, 5

z = e π i 12 or  e 2 π i 12 or  e 3 π i 12 or  e 4 π i 12 or  e 5 π i 12       A2

Note: Award A1 if additional roots are given or if three correct roots are given with no incorrect (or additional) roots.

 

[5 marks]

a.

Re S =  cos π 12 + cos 2 π 12 + cos 3 π 12 + cos 4 π 12 + cos 5 π 12

Im S =  sin π 12 + sin 2 π 12 + sin 3 π 12 + sin 4 π 12 + sin 5 π 12       A1

Note: Award A1 for both parts correct.

but  sin 5 π 12 = cos π 12 ,   sin 4 π 12 = cos 2 π 12 ,   sin 3 π 12 = cos 3 π 12 ,   sin 2 π 12 = cos 4 π 12 and  sin π 12 = cos 5 π 12       M1A1

⇒ Re S = Im S       AG

Note: Accept a geometrical method.

 

[4 marks]

b.i.

cos π 12 = cos ( π 4 π 6 ) = cos π 4 cos π 6 + sin π 4 sin π 6       M1A1

= 2 2 3 2 + 2 2 1 2

= 6 + 2 4        A1

 

[3 marks]

b.ii.

 

cos 5 π 12 = cos ( π 6 + π 4 ) = cos π 6 cos π 4 sin π 6 sin π 4       (M1)

Note: Allow alternative methods eg  cos 5 π 12 = sin π 12 = sin ( π 4 π 6 ) .

= 3 2 2 2 1 2 2 2 = 6 2 4       (A1)

Re S =  cos π 12 + cos 2 π 12 + cos 3 π 12 + cos 4 π 12 + cos 5 π 12

Re S =  2 + 6 4 + 3 2 + 2 2 + 1 2 + 6 2 4       A1

= 1 2 ( 6 + 1 + 2 + 3 )       A1

= 1 2 ( 1 + 2 ) ( 1 + 3 )

S = Re(S)(1 + i) since Re S = Im S,      R1

S =  1 2 ( 1 + 2 ) ( 1 + 3 ) ( 1 + i )       AG

 

[4 marks]

b.iii.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
b.iii.



Prove by mathematical induction that dndxnx2ex=x2+2nx+nn-1ex for n+.

[7]
a.

Hence or otherwise, determine the Maclaurin series of fx=x2ex in ascending powers of x, up to and including the term in x4.

[3]
b.

Hence or otherwise, determine the value of limx0x2ex-x23x9.

[4]
c.

Markscheme

For n=1

LHS: ddxx2ex=x2ex+2xex=exx2+2x              A1

RHS: x2+21x+11-1ex=exx2+2x              A1

so true for n=1

now assume true for n=k; i.e. dkdxkx2ex=x2+2kx+kk-1ex                             M1


Note:
Do not award M1 for statements such as "let n=k". Subsequent marks can still be awarded.


attempt to differentiate the RHS                             M1

dk+1dxk+1x2ex=ddxx2+2kx+kk-1ex

=2x+2kex+x2+2kx+kk-1ex              A1

=x2+2k+1x+kk+1ex              A1

so true for n=k implies true for n=k+1

therefore n=1 true and n=k true n=k+1 true

therefore, true for all n+                    R1


Note:
Award R1 only if three of the previous four marks have been awarded

 

[7 marks]

a.

METHOD 1

attempt to use dndxnx2ex=x2+2nx+nn-1ex             (M1)


Note: For x=0dndxnx2exx=0=nn-1 may be seen.


f0=0,  f'0=0,  f''0=2,  f'''0=6,  f40=12

use of fx=f0+xf'0+x22!f''0+x33!f'''0+x44!f40+              (M1)

fxx2+x3+12x4              A1

 

METHOD 2

'x2× Maclaurin series of ex'             (M1)

x21+x+x22!+             (A1)

fxx2+x3+12x4              A1

 

[3 marks]

b.

METHOD 1

attempt to substitute x2exx2+x3+12x4 into x2ex-x23x9              M1

x2ex-x23x9x2+x3+12x4+-x23x9             (A1)


EITHER

=x3+12x4+3x9                   A1

=x9+higher order termsx9


OR

x3+12x4+x33                   A1

1+12x+3


THEN

=1 + higher order terms

so limx0x2ex-x23x9=1                   A1

 

METHOD 2

limx0x2ex-x23x9=limx0x2ex-x2x33                  M1

=limx0ex-1x3                  (A1)

attempt to use L'Hôpital's rule                  M1

=limx0ex-013

=limx0ex3

=1                  A1

 

[4 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.



Find the value of sin π 4 + sin 3 π 4 + sin 5 π 4 + sin 7 π 4 + sin 9 π 4 .

[2]
a.

Show that 1 cos 2 x 2 sin x sin x ,   x k π  where k Z .

[2]
b.

Use the principle of mathematical induction to prove that

sin x + sin 3 x + + sin ( 2 n 1 ) x = 1 cos 2 n x 2 sin x ,   n Z + ,   x k π where k Z .

[9]
c.

Hence or otherwise solve the equation sin x + sin 3 x = cos x  in the interval 0 < x < π .

[6]
d.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

sin π 4 + sin 3 π 4 + sin 5 π 4 + sin 7 π 4 + sin 9 π 4 = 2 2 + 2 2 2 2 2 2 + 2 2 = 2 2    (M1)A1

 

Note: Award M1 for 5 equal terms with \) + \) or signs.

 

[2 marks]

a.

1 cos 2 x 2 sin x 1 ( 1 2 sin 2 x ) 2 sin x    M1

2 sin 2 x 2 sin x    A1

sin x    AG

[2 marks]

b.

let  P ( n ) : sin x + sin 3 x + + sin ( 2 n 1 ) x 1 cos 2 n x 2 sin x

if  n = 1

P ( 1 ) : 1 cos 2 x 2 sin x sin x which is true (as proved in part (b))     R1

assume P ( k )  true, sin x + sin 3 x + + sin ( 2 k 1 ) x 1 cos 2 k x 2 sin x      M1

 

Notes: Only award M1 if the words “assume” and “true” appear. Do not award M1 for “let n = k only. Subsequent marks are independent of this M1.

 

consider P ( k + 1 ) :

P ( k + 1 ) : sin x + sin 3 x + + sin ( 2 k 1 ) x + sin ( 2 k + 1 ) x 1 cos 2 ( k + 1 ) x 2 sin x

L H S = sin x + sin 3 x + + sin ( 2 k 1 ) x + sin ( 2 k + 1 ) x    M1

1 cos 2 k x 2 sin x + sin ( 2 k + 1 ) x    A1

1 cos 2 k x + 2 sin x sin ( 2 k + 1 ) x 2 sin x

1 cos 2 k x + 2 sin x cos x sin 2 k x + 2 sin 2 x cos 2 k x 2 sin x    M1

1 ( ( 1 2 sin 2 x ) cos 2 k x sin 2 x sin 2 k x ) 2 sin x    M1

1 ( cos 2 x cos 2 k x sin 2 x sin 2 k x ) 2 sin x    A1

1 cos ( 2 k x + 2 x ) 2 sin x    A1

1 cos 2 ( k + 1 ) x 2 sin x

so if true for n = k , then also true for  n = k + 1

as true for n = 1 then true for all n Z +      R1

 

Note: Accept answers using transformation formula for product of sines if steps are shown clearly.

 

Note: Award R1 only if candidate is awarded at least 5 marks in the previous steps.

 

[9 marks]

c.

EITHER

sin x + sin 3 x = cos x 1 cos 4 x 2 sin x = cos x    M1

1 cos 4 x = 2 sin x cos x ,   ( sin x 0 )    A1

1 ( 1 2 sin 2 2 x ) = sin 2 x    M1

sin 2 x ( 2 sin 2 x 1 ) = 0    M1

sin 2 x = 0  or sin 2 x = 1 2      A1

2 x = π ,   2 x = π 6 and  2 x = 5 π 6

OR

sin x + sin 3 x = cos x 2 sin 2 x cos x = cos x    M1A1

( 2 sin 2 x 1 ) cos x = 0 ,   ( sin x 0 )    M1A1

sin 2 x = 1 2 of cos x = 0     A1

2 x = π 6 ,   2 x = 5 π 6 and  x = π 2

THEN

x = π 2 ,   x = π 12  and x = 5 π 12      A1

 

Note: Do not award the final A1 if extra solutions are seen.

 

[6 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.



Three girls and four boys are seated randomly on a straight bench. Find the probability that the girls sit together and the boys sit together.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

METHOD 1

total number of arrangements 7!     (A1)

number of ways for girls and boys to sit together = 3 ! × 4 ! × 2      (M1)(A1)

 

Note:    Award M1A0 if the 2 is missing.

 

probability 3 ! × 4 ! × 2 7 !      M1

 

Note:     Award M1 for attempting to write as a probability.

 

2 × 3 × 4 ! × 2 7 × 6 × 5 × 4 !

= 2 35      A1

 

Note:     Award A0 if not fully simplified.

 

METHOD 2

3 7 × 2 6 × 1 5 + 4 7 × 3 6 × 2 5 × 1 4      (M1)A1A1

 

Note:     Accept 3 7 × 2 6 × 1 5 × 2 or 4 7 × 3 6 × 2 5 × 1 4 × 2 .

 

= 2 35      (M1)A1

 

Note:     Award A0 if not fully simplified.

 

[5 marks]

Examiners report

[N/A]



Prove by mathematical induction that ( 2 2 ) + ( 3 2 ) + ( 4 2 ) + + ( n 1 2 ) = ( n 3 ) , where n Z , n 3 .

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

( 2 2 ) + ( 3 2 ) + ( 4 2 ) + + ( n 1 2 ) = ( n 3 )

show true for n = 3      (M1)

LHS = ( 2 2 ) = 1 RHS = ( 3 3 ) = 1      A1

hence true for n = 3

assume true for n = k : ( 2 2 ) + ( 3 2 ) + ( 4 2 ) + + ( k 1 2 ) = ( k 3 )      M1

consider for n = k + 1 : ( 2 2 ) + ( 3 2 ) + ( 4 2 ) + + ( k 1 2 ) + ( k 2 )      (M1)

= ( k 3 ) + ( k 2 )      A1

= k ! ( k 3 ) ! 3 ! + k ! ( k 2 ) ! 2 ! ( = k ! 3 ! [ 1 ( k 3 ) ! + 3 ( k 2 ) ! ] ) or any correct expression with a visible common factor     (A1)

= k ! 3 ! [ k 2 + 3 ( k 2 ) ! ] or any correct expression with a common denominator     (A1)

= k ! 3 ! [ k + 1 ( k 2 ) ! ]

 

Note:     At least one of the above three lines or equivalent must be seen.

 

= ( k + 1 ) ! 3 ! ( k 2 ) ! or equivalent     A1

= ( k + 1 3 )

Result is true for k = 3 . If result is true for k it is true for k + 1 . Hence result is true for all k 3 . Hence proved by induction.     R1

 

Note:     In order to award the R1 at least [5 marks] must have been awarded.

 

[9 marks]

Examiners report

[N/A]



Consider the equation  z 4 = 4 , where  z C .

Solve the equation, giving the solutions in the form  a + i b , where  a b R .

[5]
a.

The solutions form the vertices of a polygon in the complex plane. Find the area of the polygon.

[2]
b.

Markscheme

METHOD 1

| z | = 4 4 ( = 2 )        (A1)

arg ( z 1 ) = π 4        (A1)

first solution is  1 + i        A1

valid attempt to find all roots (De Moivre or +/− their components)        (M1)

other solutions are  1 + i 1 i 1 i        A1

 

METHOD 2

z 4 = 4

( a + i b ) 4 = 4

attempt to expand and equate both reals and imaginaries.        (M1)

a 4 + 4 a 3 b i 6 a 2 b 2 4 a b 3 i + b 4 = 4

( a 4 6 a 4 + a 4 = 4 ) a = ± 1 and  ( 4 a 3 b 4 a b 3 = 0 ) a = ± b        (A1)

first solution is  1 + i        A1

valid attempt to find all roots (De Moivre or +/− their components)        (M1)

other solutions are  1 + i 1 i 1 i        A1

 

[5 marks]

a.

complete method to find area of ‘rectangle'        (M1)

= 4       A1

[2 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.



Consider the function f n ( x ) = ( cos 2 x ) ( cos 4 x ) ( cos 2 n x ) ,   n Z + .

Determine whether f n is an odd or even function, justifying your answer.

[2]
a.

By using mathematical induction, prove that

f n ( x ) = sin 2 n + 1 x 2 n sin 2 x ,   x m π 2 where m Z .

[8]
b.

Hence or otherwise, find an expression for the derivative of f n ( x ) with respect to x .

[3]
c.

Show that, for n > 1 , the equation of the tangent to the curve y = f n ( x ) at x = π 4 is 4 x 2 y π = 0 .

[8]
d.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

even function     A1

since cos k x = cos ( k x ) and f n ( x ) is a product of even functions     R1

OR

even function     A1

since ( cos 2 x ) ( cos 4 x ) = ( cos ( 2 x ) ) ( cos ( 4 x ) )     R1

 

Note:     Do not award A0R1.

 

[2 marks]

a.

consider the case n = 1

sin 4 x 2 sin 2 x = 2 sin 2 x cos 2 x 2 sin 2 x = cos 2 x     M1

hence true for n = 1     R1

assume true for n = k , ie, ( cos 2 x ) ( cos 4 x ) ( cos 2 k x ) = sin 2 k + 1 x 2 k sin 2 x     M1

 

Note:     Do not award M1 for “let n = k ” or “assume n = k ” or equivalent.

 

consider n = k + 1 :

f k + 1 ( x ) = f k ( x ) ( cos 2 k + 1 x )     (M1)

= sin 2 k + 1 x 2 k sin 2 x cos 2 k + 1 x     A1

= 2 sin 2 k + 1 x cos 2 k + 1 x 2 k + 1 sin 2 x     A1

= sin 2 k + 2 x 2 k + 1 sin 2 x     A1

so n = 1 true and n = k true n = k + 1 true. Hence true for all n Z +     R1

 

Note:     To obtain the final R1, all the previous M marks must have been awarded.

 

[8 marks]

b.

attempt to use f = v u u v v 2 (or correct product rule)     M1

f n ( x ) = ( 2 n sin 2 x ) ( 2 n + 1 cos 2 n + 1 x ) ( sin 2 n + 1 x ) ( 2 n + 1 cos 2 x ) ( 2 n sin 2 x ) 2     A1A1

 

Note:     Award A1 for correct numerator and A1 for correct denominator.

 

[3 marks]

c.

f n ( π 4 ) = ( 2 n sin π 2 ) ( 2 n + 1 cos 2 n + 1 π 4 ) ( sin 2 n + 1 π 4 ) ( 2 n + 1 cos π 2 ) ( 2 n sin π 2 ) 2     (M1)(A1)

f n ( π 4 ) = ( 2 n ) ( 2 n + 1 cos 2 n + 1 π 4 ) ( 2 n ) 2     (A1)

= 2 cos 2 n + 1 π 4   ( = 2 cos 2 n 1 π )     A1

f n ( π 4 ) = 2     A1

f n ( π 4 ) = 0     A1

 

Note:     This A mark is independent from the previous marks.

 

y = 2 ( x π 4 )     M1A1

4 x 2 y π = 0     AG

[8 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.



Consider integers a and b such that a2+b2 is exactly divisible by 4. Prove by contradiction that a and b cannot both be odd.

Markscheme

Assume that a and b are both odd.             M1


Note: Award M0 for statements such as “let a and b be both odd”.
Note: Subsequent marks after this M1 are independent of this mark and can be awarded.


Then a=2m+1 and b=2n+1            A1

a2+b22m+12+2n+12

=4m2+4m+1+4n2+4n+1            A1

=4m2+m+n2+n+2            (A1)

(4m2+m+n2+n is always divisible by 4) but 2 is not divisible by 4. (or equivalent)            R1

a2+b2 is not divisible by 4, a contradiction. (or equivalent)            R1

hence a and b cannot both be odd.            AG


Note: Award a maximum of M1A0A0(A0)R1R1 for considering identical or two consecutive odd numbers for a and b.

 

[6 marks]

Examiners report

Most candidates did not present their proof in a formal manner and merely relied on an algebraic approach rendering the proof incomplete. Very few candidates earned the first mark for making a clear assumption that a and b are both odd. A significant number of candidates only considered consecutive or identical odd numbers. The required reasoning to complete the proof were often poorly expressed or missing altogether. Only a small number of candidates were awarded all the available marks for this question.




Let the roots of the equation  z 3 = 3 + 3 i be  u v and  w .

On an Argand diagram, u v and  w  are represented by the points U, V and W respectively.

Express  3 + 3 i in the form  r e i θ , where  r > 0 and π < θ π .

[5]
a.

Find  u v and  w  expressing your answers in the form  r e i θ , where  r > 0 and  π < θ π .

[5]
b.

Find the area of triangle UVW.

[4]
c.

By considering the sum of the roots u v and  w , show that

cos 5 π 18 + cos 7 π 18 + cos 17 π 18 = 0 .

[4]
d.

Markscheme

attempt to find modulus      (M1)

r = 2 3 ( = 12 )       A1

attempt to find argument in the correct quadrant      (M1)

θ = π + arctan ( 3 3 )       A1

= 5 π 6       A1

3 + 3 i = 12 e 5 π i 6 ( = 2 3 e 5 π i 6 )

[5 marks]

a.

attempt to find a root using de Moivre’s theorem      M1

12 1 6 e 5 π i 18        A1

attempt to find further two roots by adding and subtracting  2 π 3 to the argument    M1

12 1 6 e 7 π i 18        A1

12 1 6 e 17 π i 18        A1

Note: Ignore labels for u v and  w at this stage.

 

[5 marks]

b.

METHOD 1
attempting to find the total area of (congruent) triangles UOV, VOW and UOW        M1

Area = 3 ( 1 2 ) ( 12 1 6 ) ( 12 1 6 ) sin 2 π 3       A1A1

Note: Award A1 for  ( 12 1 6 ) ( 12 1 6 )  and A1 for  sin 2 π 3

= 3 3 4 ( 12 1 3 )  (or equivalent)     A1

 

METHOD 2

UV2  = ( 12 1 6 ) 2 + ( 12 1 6 ) 2 2 ( 12 1 6 ) ( 12 1 6 ) cos 2 π 3  (or equivalent)     A1

UV  = 3 ( 12 1 6 )  (or equivalent)     A1

attempting to find the area of UVW using Area =  1 2  × UV × VW × sin  α  for example        M1

Area  = 1 2 ( 3 × 12 1 6 ) ( 3 × 12 1 6 ) sin π 3

= 3 3 4 ( 12 1 3 )  (or equivalent)     A1

 

[4 marks]

c.

u + v + w = 0     R1

12 1 6 ( cos ( 7 π 18 ) + i sin ( 7 π 18 ) + cos 5 π 18 + i sin 5 π 18 + cos 17 π 18 + i sin 17 π 18 ) = 0      A1

consideration of real parts       M1

12 1 6 ( cos ( 7 π 18 ) + cos 5 π 18 + cos 17 π 18 ) = 0

cos ( 7 π 18 ) = cos 17 π 18  explicitly stated      A1

cos 5 π 18 + cos 7 π 18 + cos 17 π 18 = 0      AG

[4 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.



Find the value of 193x-5xdx.

Markscheme

3x-5xdx=3-5x-12dx             (A1)

3x-5xdx=3x-10x12+c             A1A1

substituting limits into their integrated function and subtracting             (M1)

39-10912-31-10112  OR  27-10×3-3-10

=4             A1

 

[5 marks]

Examiners report

A mixed response was noted for this question. Candidates who simplified the algebraic fraction before integrating were far more successful in gaining full marks in this question. Many candidates used other valid approaches such as integration by substitution and integration by parts with varying degrees of success. A small number of candidates substituted the limits without integrating.




Consider the three planes

1: 2x-y+z=4

2: x-2y+3z=5

3:-9x+3y-2z=32

Show that the three planes do not intersect.

[4]
a.

Verify that the point P(1, -2, 0) lies on both 1 and 2.

[1]
b.i.

Find a vector equation of L, the line of intersection of 1 and 2.

[4]
b.ii.

Find the distance between L and 3.

[6]
c.

Markscheme

METHOD 1

attempt to eliminate a variable                 M1

obtain a pair of equations in two variables


EITHER

-3x+z=-3 and          A1

-3x+z=44          A1


OR

-5x+y=-7 and          A1

-5x+y=40          A1


OR

3x-z=3 and          A1

3x-z=-795          A1


THEN

the two lines are parallel (-344 or -740 or 3-795)          R1

 

Note: There are other possible pairs of equations in two variables.
To obtain the final R1, at least the initial M1 must have been awarded.

 

hence the three planes do not intersect          AG

 

METHOD 2

vector product of the two normals =-1-5-3  (or equivalent)          A1

r=1-20+λ153  (or equivalent)          A1

 

Note: Award A0 if “r=” is missing. Subsequent marks may still be awarded.

 

Attempt to substitute 1+λ,-2+5λ,3λ in 3                 M1

-91+λ+3-2+5λ-23λ=32

-15=32, a contradiction          R1

hence the three planes do not intersect          AG

 

METHOD 3

attempt to eliminate a variable                M1

-3y+5z=6          A1

-3y+5z=100          A1

0=94, a contradiction           R1

 

Note: Accept other equivalent alternatives. Accept other valid methods.
To obtain the final R1, at least the initial M1 must have been awarded.

 

hence the three planes do not intersect          AG

 

[4 marks]

a.

1:2+2+0=4  and  2:1+4+0=5          A1

 

[1 mark]

b.i.

METHOD 1

attempt to find the vector product of the two normals          M1

2-11×1-23

=-1-5-3          A1

r=1-20+λ153          A1A1

 

Note: Award A1A0 if “r=” is missing.
Accept any multiple of the direction vector.
Working for (b)(ii) may be seen in part (a) Method 2. In this case penalize lack of “r=” only once.

 

METHOD 2

attempt to eliminate a variable from 1 and 2          M1

3x-z=3  OR  3y-5z=-6  OR  5x-y=7

Let x=t

substituting x=t in 3x-z=3 to obtain

z=-3+3t  and  y=5t-7 (for all three variables in parametric form)          A1

r=0-7-3+λ153          A1A1

 

Note: Award A1A0 if “r=” is missing.
Accept any multiple of the direction vector. Accept other position vectors which satisfy both the planes 1 and 2 .

 

[4 marks]

b.ii.

METHOD 1

the line connecting L and 3 is given by L1

attempt to substitute position and direction vector to form L1           (M1)

s=1-20+t-93-2          A1

substitute 1-9t,-2+3t,-2t in 3             M1

-91-9t+3-2+3t-2-2t=32

94t=47t=12          A1

attempt to find distance between 1,-2,0 and their point -72,-12,-1           (M1)

=1-20+12-93-2-1-20=12-92+32+-22

=942          A1

 

METHOD 2

unit normal vector equation of 3 is given by -932·xyz81+9+4           (M1)

=3294          A1

let 4 be the plane parallel to 3 and passing through P
then the normal vector equation of 4 is given by

-932·xyz=-932·1-20=-15             M1

 

unit normal vector equation of 4 is given by

-932·xyz81+9+4=-1594          A1

distance between the planes is 3294--1594           (M1)

=4794=942          A1

 

[6 marks]

c.

Examiners report

Part (a) was well attempted using a variety of approaches. Most candidates were able to gain marks for part (a) through attempts to eliminate a variable with many subsequently making algebraic errors. Part (b)(i) was well done. For part (b)(ii) few successful attempts were noted, many candidates failed to use an appropriate notation "r =" while giving the vector equation of a line. Part (c) proved to be challenging for most candidates with very few correct answers seen. Many candidates did not attempt part (c).

a.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
c.



Prove by contradiction that the equation 2x3+6x+1=0 has no integer roots.

Markscheme

METHOD 1 (rearranging the equation)

assume there exists some α such that 2α3+6α+1=0         M1


Note:
Award M1 for equivalent statements such as ‘assume that α is an integer root of 2α3+6α+1=0’. Condone the use of x throughout the proof.

Award M1 for an assumption involving α3+3α+12=0.

Note: Award M0 for statements such as “let’s consider the equation has integer roots…” ,“let α be a root of 2α3+6α+1=0…”

Note: Subsequent marks after this M1 are independent of this M1 and can be awarded.

 

attempts to rearrange their equation into a suitable form         M1


EITHER

2α3+6α=-1          A1

α2α3+6α is even          R1

2α3+6α=-1 which is not even and so α cannot be an integer          R1


Note:
Accept ‘2α3+6α=-1 which gives a contradiction’.


OR

1=2-α3-3α          A1

α-α3-3α          R1

1 is even which is not true and so α cannot be an integer          R1


Note:
Accept ‘1 is even which gives a contradiction’.


OR

12=-α3-3α          A1

α-α3-3α          R1

-α3-3α is is not an integer =12 and so α cannot be an integer          R1


Note:
Accept ‘ -α3-3α is not an integer =12 which gives a contradiction’.


OR

α=-12α2+3          A1

α-12α2+3          R1

-12α2+3 is not an integer and so α cannot be an integer          R1


Note:
Accept -12α2+3 is not an integer which gives a contradiction’.


THEN

so the equation 2x3+6x+1=0 has no integer roots           AG

 

METHOD 2

assume there exists some α such that 2α3+6α+1=0         M1


Note:
 Award M1 for equivalent statements such as ‘assume that α is an integer root of 2α3+6α+1=0’. Condone the use of x throughout the proof. Award M1 for an assumption involving α3+3α+12=0 and award subsequent marks based on this.

Note: Award M0 for statements such as “let’s consider the equation has integer roots…” ,“let α be a root of 2α3+6α+1=0…”

Note: Subsequent marks after this M1 are independent of this M1 and can be awarded.

 

let fx=2x3+6x+1  (and fα=0)

f'x=6x2+6>0 for all x f is a (strictly) increasing function         M1A1

f0=1 and f-1=-7          R1

thus fx=0 has only one real root between -1 and 0, which gives a contradiction

(or therefore, contradicting the assumption that fα=0 for some α),          R1

so the equation 2x3+6x+1=0 has no integer roots           AG

  

[5 marks]

Examiners report

[N/A]



Consider the quartic equation z4+4z3+8z2+80z+400=0, z.

Two of the roots of this equation are a+bi and b+ai, where a, b.

Find the possible values of a.

Markscheme

METHOD 1

other two roots are a-bi and b-ai        A1

sum of roots =-4 and product of roots =400       A1

attempt to set sum of four roots equal to -4 or 4 OR
attempt to set product of four roots equal to 400        M1

a+bi+a-bi+b+ai+bai=4

2a+2b=4(a+b=2)         A1

(a+bi)(abi) (b+ai)(bai)=400

a2+b22=400         A1

a2+b2=20

attempt to solve simultaneous equations             (M1)

a=2 or a=-4           A1A1

 

METHOD 2

other two roots are a-bi and b-ai        A1

z-a+biz-a-biz-b+aiz-b-ai=0        A1

z-a2+b2z-b2+a2=0

z2-2az+a2+b2z2-2bz+b2+a2=0        A1

Attempt to equate coefficient of z3 and constant with the given quartic equation        M1

-2a-2b=4 and a2+b22=400        A1

attempt to solve simultaneous equations             (M1)

a=2 or a=-4           A1A1

 

[8 marks]

Examiners report

[N/A]



Consider the expression 11+ax-1-x where a, a0.

The binomial expansion of this expression, in ascending powers of x, as far as the term in x2 is 4bx+bx2, where b.

Find the value of a and the value of b.

[6]
a.

State the restriction which must be placed on x for this expansion to be valid.

[1]
b.

Markscheme

attempt to expand binomial with negative fractional power                 (M1)

11+ax=1+ax-12=1-ax2+3a2x28+                A1

1-x=1-x12=1-x2-x28+                A1

11+ax-1-x=1-a2x+3a2+18x2+

attempt to equate coefficients of x or x2                 (M1)

x :  1-a2=4b;  x2 : 3a2+18=b

attempt to solve simultaneously                 (M1)

a=-13, b=16                A1

 

[6 marks]

a.

x<1              A1

 

[1 mark]

b.

Examiners report

[N/A]
a.
[N/A]
b.



Let z = 1 cos 2 θ i sin 2 θ ,   z C ,   0 θ π .

Solve 2 sin ( x + 60 ) = cos ( x + 30 ) ,   0 x 180 .

[5]
a.

Show that sin 105 + cos 105 = 1 2 .

[3]
b.

Find the modulus and argument of z in terms of θ . Express each answer in its simplest form.

[9]
c.i.

Hence find the cube roots of z  in modulus-argument form.

[5]
c.ii.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

2 sin ( x + 60 ) = cos ( x + 30 )

2 ( sin x cos 60 + cos x sin 60 ) = cos x cos 30 sin x sin 30      (M1)(A1)

2 sin x × 1 2 + 2 cos x × 3 2 = cos x × 3 2 sin x × 1 2      A1

3 2 sin x = 3 2 cos x

tan x = 1 3      M1

x = 150      A1

[5 marks]

a.

EITHER

choosing two appropriate angles, for example 60° and 45°     M1

sin 105 = sin 60 cos 45 + cos 60 sin 45 and

cos 105 = cos 60 cos 45 sin 60 sin 45      (A1)

sin 105 + cos 105 = 3 2 × 1 2 + 1 2 × 1 2 + 1 2 × 1 2 3 2 × 1 2      A1

= 1 2      AG

OR

attempt to square the expression     M1

( sin 105 + cos 105 ) 2 = sin 2 105 + 2 sin 105 cos 105 + cos 2 105

( sin 105 + cos 105 ) 2 = 1 + sin 210      A1

= 1 2      A1

sin 105 + cos 105 = 1 2   AG

 

[3 marks]

b.

EITHER

z = ( 1 cos 2 θ ) i sin 2 θ

| z | = ( 1 cos 2 θ ) 2 + ( sin 2 θ ) 2      M1

| z | = 1 2 cos 2 θ + cos 2 2 θ + sin 2 2 θ      A1

= 2 ( 1 cos 2 θ )      A1

= 2 ( 2 sin 2 θ )

= 2 sin θ      A1

let arg ( z ) = α

tan α = sin 2 θ 1 cos 2 θ      M1

= 2 sin θ cos θ 2 sin 2 θ      (A1)

= cot θ      A1

arg ( z ) = α = arctan ( tan ( π 2 θ ) )      A1

= θ π 2      A1

OR

z = ( 1 cos 2 θ ) i sin 2 θ

= 2 sin 2 θ 2 i sin θ cos θ      M1A1

= 2 sin θ ( sin θ i cos θ )      (A1)

= 2 i sin θ ( cos θ + i sin θ )      M1A1

= 2 sin θ ( cos ( θ π 2 ) + i sin ( θ π 2 ) )      M1A1

| z | = 2 sin θ      A1

arg ( z ) = θ π 2      A1

[9 marks]

c.i.

attempt to apply De Moivre’s theorem     M1

( 1 cos 2 θ i sin 2 θ ) 1 3 = 2 1 3 ( sin θ ) 1 3 [ cos ( θ π 2 + 2 n π 3 ) + i sin ( θ π 2 + 2 n π 3 ) ]      A1A1A1

 

Note:     A1 for modulus, A1 for dividing argument of z by 3 and A1 for 2 n π .

 

Hence cube roots are the above expression when n = 1 ,   0 ,   1 . Equivalent forms are acceptable.     A1

[5 marks]

c.ii.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.i.
[N/A]
c.ii.



Use the binomial theorem to expand cosθ+isinθ4. Give your answer in the form a+bi where a and b are expressed in terms of sinθ and cosθ.

[3]
a.

Use de Moivre’s theorem and the result from part (a) to show that cot4θ=cot4θ-6cot2θ+14cot3θ-4cotθ.

[5]
b.

Use the identity from part (b) to show that the quadratic equation x2-6x+1=0 has roots cot2π8 and cot23π8.

[5]
c.

Hence find the exact value of cot23π8.

[4]
d.

Deduce a quadratic equation with integer coefficients, having roots cosec2π8 and cosec23π8.

[3]
e.

Markscheme

* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.

uses the binomial theorem on cosθ+isinθ4       M1

=C04cos4θ+C14cos3θisinθ+C24cos2θi2sin2θ+C34cosθi3sin3θ+C44i4sin4θ        A1

=cos4θ-6cos2θsin2θ+sin4θ+i4cos3θsinθ-4cosθsin3θ        A1

 

[3 marks]

a.

(using de Moivre’s theorem with n=4 gives) cos4θ+isin4θ        (A1)

equates both the real and imaginary parts of cos4θ+isin4θ and cos4θ-6cos2θsin2θ+sin4θ+i4cos3θsinθ-4cosθsin3θ       M1

cos4θ=cos4θ-6cos2θsin2θ+sin4θ  and  sin4θ=4cos3θsinθ-4cosθsin3θ

recognizes that cot4θ=cos4θsin4θ        (A1)

substitutes for sin4θ and cos4θ into cos4θsin4θ       M1

cot4θ=cos4θ-6cos2θsin2θ+sin4θ4cos3θsinθ-4cosθsin3θ

divides the numerator and denominator by sin4θ to obtain

cot4θ=cos4θ-6cos2θsin2θ+sin4θsin4θ4cos3θsinθ-4cosθsin3θsin4θ        A1

cot4θ=cot4θ-6cot2θ+14cot3θ-4cotθ        AG

 

[5 marks]

b.

setting cot4θ=0 and putting x=cot2θ in the numerator of cot4θ=cot4θ-6cot2θ+14cot3θ-4cotθ gives x2-6x+1=0        M1

attempts to solve cot4θ=0 for θ        M1

4θ=π2,3π2, 4θ=122n+1π,n=0,1,        (A1)

θ=π8,3π8        A1

 

Note: Do not award the final A1 if solutions other than θ=π8,3π8 are listed.

 

finding the roots of cot4θ=0 θ=π8,3π8 corresponds to finding the roots of x2-6x+1=0 where x=cot2θ        R1

so the equation x2-6x+1=0 as roots cot2π8 and cot23π8        AG

 

[5 marks]

c.

attempts to solve x2-6x+1=0 for x        M1

x=3±22        A1

since cot2π8>cot23π8, cot23π8 has the smaller value of the two roots        R1

 

Note: Award R1 for an alternative convincing valid reason.

 

so cot23π8=3-22        A1

 

[4 marks]

d.

let y=cosec2θ

uses cot2θ=cosec2θ-1 where x=cot2θ        (M1)

x2-6x+1=0y-12-6y-1+1=0        M1

y2-8y+8=0        A1

 

[3 marks]

e.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.



Use the principle of mathematical induction to prove that

1 + 2 ( 1 2 ) + 3 ( 1 2 ) 2 + 4 ( 1 2 ) 3 + + n ( 1 2 ) n 1 = 4 n + 2 2 n 1 , where n Z + .

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

if  n = 1

LHS = 1 ; RHS = 4 3 2 0 = 4 3 = 1      M1

hence true for  n = 1

assume true for  n = k      M1

Note: Assumption of truth must be present. Following marks are not dependent on the first two M1 marks.

so  1 + 2 ( 1 2 ) + 3 ( 1 2 ) 2 + 4 ( 1 2 ) 3 + + k ( 1 2 ) k 1 = 4 k + 2 2 k 1

if n = k + 1

1 + 2 ( 1 2 ) + 3 ( 1 2 ) 2 + 4 ( 1 2 ) 3 + + k ( 1 2 ) k 1 + ( k + 1 ) ( 1 2 ) k

= 4 k + 2 2 k 1 + ( k + 1 ) ( 1 2 ) k       M1A1

finding a common denominator for the two fractions      M1

= 4 2 ( k + 2 ) 2 k + k + 1 2 k

= 4 2 ( k + 2 ) ( k + 1 ) 2 k = 4 k + 3 2 k ( = 4 ( k + 1 ) + 2 2 ( k + 1 ) 1 )      A1

hence if true for  n = k then also true for  n = k + 1 , as true for  n = 1 , so true (for all  n Z + )     R1

Note: Award the final R1 only if the first four marks have been awarded.

[7 marks]

Examiners report

[N/A]



Consider the complex numbers z 1 = 1 + 3 i,  z 2 = 1 + i and w = z 1 z 2 .

By expressing z 1 and z 2 in modulus-argument form write down the modulus of w ;

[3]
a.i.

By expressing z 1 and z 2 in modulus-argument form write down the argument of w .

[1]
a.ii.

Find the smallest positive integer value of n , such that w n is a real number.

[2]
b.

Markscheme

z 1 = 2 cis ( π 3 ) and z 2 = 2 cis ( π 4 )     A1A1

 

Note:     Award A1A0 for correct moduli and arguments found, but not written in mod-arg form.

 

| w | = 2     A1

[3 marks]

a.i.

z 1 = 2 cis ( π 3 ) and z 2 = 2 cis ( π 4 )     A1A1

 

Note:     Award A1A0 for correct moduli and arguments found, but not written in mod-arg form.

 

arg w = π 12     A1

 

Notes:     Allow FT from incorrect answers for z 1 and z 2 in modulus-argument form.

 

[1 mark]

a.ii.

EITHER

sin ( π n 12 ) = 0     (M1)

OR

arg ( w n ) = π     (M1)

n π 12 = π

THEN

n = 12     A1

[2 marks]

b.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.



Consider the function  f ( x ) = x e 2 x , where  x R . The  n th  derivative of  f ( x ) is denoted by  f ( n ) ( x ) .

 

Prove, by mathematical induction, that  f ( n ) ( x ) = ( 2 n x + n 2 n 1 ) e 2 x n Z + .

Markscheme

f ( x ) = e 2 x + 2 x e 2 x       A1

Note: This must be obtained from the candidate differentiating  f ( x ) .

= ( 2 1 x + 1 × 2 1 1 ) e 2 x       A1

(hence true for n = 1 )

 

assume true for  n = k :      M1

f ( k ) ( x ) = ( 2 k x + k 2 k 1 ) e 2 x

Note: Award M1 if truth is assumed. Do not allow “let n = k ”.

consider  n = k + 1 :

f ( k + 1 ) ( x ) = d d x ( ( 2 k x + k 2 k 1 ) e 2 x )

attempt to differentiate  f ( k ) ( x )        M1

f ( k + 1 ) ( x ) = 2 k e 2 x + 2 ( 2 k x + k 2 k 1 ) e 2 x       A1

f ( k + 1 ) ( x ) = ( 2 k + 2 k + 1 x + k 2 k ) e 2 x

f ( k + 1 ) ( x ) = ( 2 k + 1 x + ( k + 1 ) 2 k ) e 2 x       A1

     = ( 2 k + 1 x + ( k + 1 ) 2 ( k + 1 ) 1 ) e 2 x

True for n = 1 and n = k true implies true for n = k + 1 .

Therefore the statement is true for all  n ( Z + )       R1

Note: Do not award final R1 if the two previous M1s are not awarded. Allow full marks for candidates who use the base case n = 0 .

 

[7 marks]

Examiners report

[N/A]



Let  f ( x ) = 4 x 5 x 2 3 x + 2       x 1 , x 2 .

Express f ( x ) in partial fractions.

[6]
a.

Use part (a) to show that f ( x ) is always decreasing.

[3]
b.

Use part (a) to find the exact value of  1 0 f ( x ) d x , giving the answer in the form  ln q ,    q Q .

[4]
c.

Markscheme

f ( x ) = 4 x 5 ( x 1 ) ( x 2 ) A x 1 + B x 2    M1A1

4 x 5 A ( x 2 ) + B ( x 1 )      M1A1

x = 1 A = 1       x = 2 B = 3       A1A1

f ( x ) = 1 x 1 + 3 x 2

[6 marks]

a.

f ( x ) = ( x 1 ) 2 3 ( x 2 ) 2    M1A1

This is always negative so function is always decreasing.     R1AG

[3 marks]

b.

1 0 1 x 1 + 3 x 2   d x = [ ln | x 1 | + 3 ln | x 2 | ] 1 0    M1A1

= ( 3 ln 2 ) ( ln 2 + 3 ln 3 ) = 2 ln 2 3 ln 3 = ln 4 27     A1A1

[4 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.



Consider the complex numbers z1=1+bi and z2=1-b2-2bi, where b, b0.

Find an expression for z1z2 in terms of b.

[3]
a.

Hence, given that argz1z2=π4, find the value of b.

[3]
b.

Markscheme

z1z2=1+bi1-b2-2bi

=1-b2-2i2b2+i-2b+b-b3             M1

=1+b2+i-b-b3            A1A1


Note: Award A1 for 1+b2 and A1 for -bi-b3i.

 

[3 marks]

a.

argz1z2=arctan-b-b31+b2=π4            (M1)


EITHER
arctan-b=π4 (since 1+b20, for b)            A1


OR

-b-b3=1+b2  (or equivalent)            A1


THEN

b=-1            A1

 

[3 marks]

b.

Examiners report

Part (a) was generally well done with many completely correct answers seen. Part (b) proved to be challenging with many candidates incorrectly equating the ratio of their imaginary and real parts to π4 instead of tanπ4. Stronger candidates realized that when θ=π4, it forms an isosceles right-angled triangle and equated the real and imaginary parts to obtain the value of b .

a.
[N/A]
b.



Chloe and Selena play a game where each have four cards showing capital letters A, B, C and D.
Chloe lays her cards face up on the table in order A, B, C, D as shown in the following diagram.

N17/5/MATHL/HP1/ENG/TZ0/10

Selena shuffles her cards and lays them face down on the table. She then turns them over one by one to see if her card matches with Chloe’s card directly above.
Chloe wins if no matches occur; otherwise Selena wins.

Chloe and Selena repeat their game so that they play a total of 50 times.
Suppose the discrete random variable X represents the number of times Chloe wins.

Show that the probability that Chloe wins the game is 3 8 .

[6]
a.

Determine the mean of X.

[3]
b.i.

Determine the variance of X.

[2]
b.ii.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

METHOD 1

number of possible “deals” = 4 ! = 24     A1

consider ways of achieving “no matches” (Chloe winning):

Selena could deal B, C, D (ie, 3 possibilities)

as her first card     R1

for each of these matches, there are only 3 possible combinations for the remaining 3 cards     R1

so no. ways achieving no matches = 3 × 3 = 9     M1A1

so probability Chloe wins = 9 23 = 3 8     A1AG

 

METHOD 2

number of possible “deals” = 4 ! = 24     A1

consider ways of achieving a match (Selena winning)

Selena card A can match with Chloe card A, giving 6 possibilities for this happening     R1

if Selena deals B as her first card, there are only 3 possible combinations for the remaining 3 cards. Similarly for dealing C and dealing D     R1

so no. ways achieving one match is = 6 + 3 + 3 + 3 = 15     M1A1

so probability Chloe wins = 1 15 24 = 3 8     A1AG

 

METHOD 3

systematic attempt to find number of outcomes where Chloe wins (no matches)

(using tree diag. or otherwise)     M1

9 found     A1

each has probability 1 4 × 1 3 × 1 2 × 1     M1

= 1 24     A1

their 9 multiplied by their 1 24     M1A1

= 3 8     AG

 

[6 marks]

a.

X B ( 50 ,   3 8 )     (M1)

μ = n p = 50 × 3 8 = 150 8   ( = 75 4 )   ( = 18.75 )     (M1)A1

[3 marks]

b.i.

σ 2 = n p ( 1 p ) = 50 × 3 8 × 5 8 = 750 64   ( = 375 32 )   ( = 11.7 )     (M1)A1

[2 marks]

b.ii.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.



Consider the function defined by fx=kx-5x-k, where x\k and k25

Consider the case where k=3.

State the equation of the vertical asymptote on the graph of y=f(x).

[1]
a.

State the equation of the horizontal asymptote on the graph of y=f(x).

[1]
b.

Use an algebraic method to determine whether f is a self-inverse function.

[4]
c.

Sketch the graph of y=f(x), stating clearly the equations of any asymptotes and the coordinates of any points of intersections with the coordinate axes.

[3]
d.

The region bounded by the x-axis, the curve y=f(x), and the lines x=5 and x=7 is rotated through 2π about the x-axis. Find the volume of the solid generated, giving your answer in the form π(a+b ln2) , where a, b.

[6]
e.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

x=k      A1


[1 mark]

a.

y=k      A1


[1 mark]

b.

METHOD 1

ffx=kkx-5x-k-5kx-5x-k-k        M1

=kkx-5-5x-kkx-5-kx-k        A1

=k2x-5k-5x+5kkx-5-kx+k2

=k2x-5xk2-5        A1

=xk2-5k2-5

=x

ffx=x , (hence f is self-inverse)        R1


Note:
The statement f(f(x))=x could be seen anywhere in the candidate’s working to award R1.

 

METHOD 2

fx=kx-5x-k

x=ky-5y-k        M1


Note:
Interchanging x and y can be done at any stage.


xy-k=ky-5        A1

xy-xk=ky-5

xy-ky=xk-5

yx-k=kx-5        A1

y=f-1x=kx-5x-k  (hence f is self-inverse)        R1


[4 marks]

c.

attempt to draw both branches of a rectangular hyperbola        M1

x=3 and y=3        A1

0, 53 and 53, 0        A1


[3 marks]

d.

METHOD 1

volume=π573x-5x-32dx       (M1)

EITHER

attempt to express 3x-5x-3 in the form p+qx-3       M1

3x-5x-3=3+4x-3       A1

OR

attempt to expand 3x-5x-32 or 3x-52 and divide out       M1

3x-5x-32=9+24x-56x-32       A1

THEN

3x-5x-32=9+24x-3+16x-32       A1

volume=π579+24x-3+16x-32dx

=π9x+24lnx-3-16x-357       A1

=π63+24ln4-4-45+24ln2-8

=π22+24ln2       A1

 

METHOD 2

volume=π573x-5x-32dx       (M1)

substituting u=x-3dudx=1       A1

3x-5=3u+3-5=3u+4

volume=π243u+4u2du       M1

=π249+16u2+24udu       A1

=π9u-16u+24lnu24       A1


Note: Ignore absence of or incorrect limits seen up to this point.


=π22+24ln2       A1


[6 marks]

e.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.



Let ω be one of the non-real solutions of the equation z 3 = 1 .

Consider the complex numbers p = 1 3 i and q = x + ( 2 x + 1 ) i , where x R .

Determine the value of

(i)     1 + ω + ω 2 ;

(ii)     1 + ω * + ( ω * ) 2 .

[4]
a.

Show that ( ω 3 ω 2 ) ( ω 2 3 ω ) = 13 .

[4]
b.

Find the values of x that satisfy the equation | p | = | q | .

[5]
c.

Solve the inequality Re ( p q ) + 8 < ( Im ( p q ) ) 2 .

[6]
d.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

(i)     METHOD 1

1 + ω + ω 2 = 1 ω 3 1 ω = 0    A1

as ω 1      R1

METHOD 2

solutions of 1 ω 3 = 0  are ω = 1 ,   ω  =  1 ± 3 i 2      A1

verification that the sum of these roots is 0     R1

(ii)     1 + ω * + ( ω * ) 2 = 0      A2

[4 marks]

a.

( ω 3 ω 2 ) ( ω 2 3 ω ) = 3 ω 4 + 10 ω 3 3 ω 2    M1A1

EITHER

= 3 ω 2 ( ω 2 + ω + 1 ) + 13 ω 3    M1

= 3 ω 2 × 0 + 13 × 1    A1

OR

= 3 ω + 10 3 ω 2 = 3 ( ω 2 + ω + 1 ) + 13    M1

= 3 × 0 + 13     A1

OR

substitution by ω = 1 ± 3 i 2  in any form     M1

numerical values of each term seen     A1

THEN

= 13    AG

[4 marks]

b.

| p | = | q | 1 2 + 3 2 = x 2 + ( 2 x + 1 ) 2    (M1)(A1)

5 x 2 + 4 x 9 = 0    A1

( 5 x + 9 ) ( x 1 ) = 0    (M1)

x = 1 ,   x = 9 5    A1

[5 marks]

c.

p q = ( 1 3 i ) ( x + ( 2 x + 1 ) i ) = ( 7 x + 3 ) + ( 1 x ) i    M1A1

Re ( p q ) + 8 < ( Im ( p q ) ) 2 ( 7 x + 3 ) + 8 < ( 1 x ) 2    M1

x 2 9 x 10 > 0    A1

( x + 1 ) ( x 10 ) > 0    M1

x < 1 ,   x > 10    A1

[6 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.



An arithmetic sequence u 1 u 2 u 3 has u 1 = 1 and common difference d 0 . Given that u 2 u 3 and u 6 are the first three terms of a geometric sequence

Given that u N = 15

find the value of d .

[4]
a.

determine the value of r = 1 N u r .

[3]
b.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

use of u n = u 1 + ( n 1 ) d      M1

( 1 + 2 d ) 2 = ( 1 + d ) ( 1 + 5 d ) (or equivalent)     M1A1

d = 2      A1

[4 marks]

a.

1 + ( N 1 ) × 2 = 15

N = 9      (A1)

r = 1 9 u r = 9 2 ( 2 + 8 × 2 )      (M1)

= 63      A1

[3 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.



Solve the equation 4 x + 2 x + 2 = 3 .

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

attempt to form a quadratic in 2 x      M1

( 2 x ) 2 + 4 2 x 3 = 0    A1

2 x = 4 ± 16 + 12 2   ( = 2 ± 7 )    M1

2 x = 2 + 7   ( as  2 7 < 0 )    R1

x = log 2 ( 2 + 7 )   ( x = ln ( 2 + 7 ) ln 2 )    A1

 

Note: Award R0 A1 if final answer is x = log 2 ( 2 + 7 ) .

 

[5 marks]

Examiners report

[N/A]



Solve the simultaneous equations

lo g 2 6 x = 1 + 2 lo g 2 y

1 + lo g 6 x = lo g 6 ( 15 y 25 ) .

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

use of at least one “log rule” applied correctly for the first equation       M1

lo g 2 6 x = lo g 2 2 + 2 lo g 2 y

= lo g 2 2 + lo g 2 y 2

= lo g 2 ( 2 y 2 )

6 x = 2 y 2        A1

use of at least one “log rule” applied correctly for the second equation       M1

lo g 6 ( 15 y 25 ) = 1 + lo g 6 x

= lo g 6 6 + lo g 6 x

= lo g 6 6 x

15 y 25 = 6 x        A1

attempt to eliminate x (or y ) from their two equations       M1

2 y 2 = 15 y 25

2 y 2 15 y + 25 = 0

( 2 y 5 ) ( y 5 ) = 0

x = 25 12 , y = 5 2 ,        A1

or  x = 25 3 , y = 5        A1

Note: x , y values do not have to be “paired” to gain either of the final two A marks.

[7 marks]

Examiners report

[N/A]



Solve the equation log 2 ( x + 3 ) + log 2 ( x 3 ) = 4 .

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

log 2 ( x + 3 ) + log 2 ( x 3 ) = 4

log 2 ( x 2 9 ) = 4     (M1)

x 2 9 = 2 4   ( = 16 )     M1A1

x 2 = 25

x = ± 5     (A1)

x = 5     A1

[5 marks]

Examiners report

[N/A]



The 1st, 4th and 8th terms of an arithmetic sequence, with common difference d , d 0 , are the first three terms of a geometric sequence, with common ratio r . Given that the 1st term of both sequences is 9 find

the value of d ;

[4]
a.

the value of r ;

[1]
b.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

EITHER

the first three terms of the geometric sequence are 9 , 9 r and 9 r 2      (M1)

9 + 3 d = 9 r ( 3 + d = 3 r ) and 9 + 7 d = 9 r 2      (A1)

attempt to solve simultaneously     (M1)

9 + 7 d = 9 ( 3 + d 3 ) 2

OR

the 1 st , 4 th and 8 th terms of the arithmetic sequence are

9 ,   9 + 3 d ,   9 + 7 d      (M1)

9 + 7 d 9 + 3 d = 9 + 3 d 9      (A1)

attempt to solve     (M1)

THEN

d = 1      A1

[4 marks]

a.

r = 4 3      A1

 

Note:     Accept answers where a candidate obtains d by finding r first. The first two marks in either method for part (a) are awarded for the same ideas and the third mark is awarded for attempting to solve an equation in r .

 

[1 mark]

b.

Examiners report

[N/A]
a.
[N/A]
b.



Solve  ( ln x ) 2 ( ln 2 ) ( ln x ) < 2 ( ln 2 ) 2 .

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

( ln x ) 2 ( ln 2 ) ( ln x ) 2 ( ln 2 ) 2 ( = 0 )

EITHER

ln x = ln 2 ± ( ln 2 ) 2 + 8 ( ln 2 ) 2 2      M1

= ln 2 ± 3 ln 2 2      A1

OR

( ln x 2 ln 2 ) ( ln x + 2 ln 2 ) ( = 0 )      M1A1

THEN

ln x = 2 ln 2 or  ln 2      A1

x = 4 or  x = 1 2        (M1)A1   

Note: (M1) is for an appropriate use of a log law in either case, dependent on the previous M1 being awarded, A1 for both correct answers.

solution is  1 2 < x < 4      A1

[6 marks]

Examiners report

[N/A]



In the following Argand diagram the point A represents the complex number 1 + 4 i and the point B represents the complex number 3 + 0 i . The shape of ABCD is a square. Determine the complex numbers represented by the points C and D.

M17/5/MATHL/HP1/ENG/TZ2/05

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

C represents the complex number 1 2 i      A2

D represents the complex number 3 + 2 i      A2

[4 marks]

Examiners report

[N/A]



Show that lo g r 2 x = 1 2 lo g r x  where  r , x R + .

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

METHOD 1

lo g r 2 x = lo g r x lo g r r 2 ( = lo g r x 2 lo g r r )      M1A1

= lo g r x 2      AG

[2 marks]

 

METHOD 2

lo g r 2 x = 1 lo g x r 2      M1

= 1 2 lo g x r      A1

= lo g r x 2      AG

[2 marks]

 

Examiners report

[N/A]



Let  f ( x ) = 1 1 x 2 for  1 < x < 1 . Use partial fractions to find  f ( x )   d x .

Markscheme

1 1 x 2 = 1 ( 1 x ) ( 1 + x ) A 1 x + B 1 + x     M1M1A1

1 A ( 1 + x ) + B ( 1 x ) A = B = 1 2      M1A1A1

1 2 1 x + 1 2 1 + x d x = 1 2 ln ( 1 x ) + 1 2 ln ( 1 + x ) + c     ( = ln k 1 + x 1 x )     M1A1

[8 marks]

Examiners report

[N/A]



It is given that 2cosAsinBsinA+B-sinA-B. (Do not prove this identity.)

Using mathematical induction and the above identity, prove that Σr=1ncos2r-1θ=sin2nθ2sinθ for n+.

Markscheme

* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.

let Pn be the proposition that Σr=1ncos2r-1θ=sin2nθ2sinθ for n+

considering P1:

LHS=cos1θ=cosθ and RHS=sin2θ2sinθ=2sinθcosθ2sinθ=cosθ=LHS

so P1 is true        R1

assume Pk is true, i.e. Σr=1kcos2r-1θ=sin2kθ2sinθ k+        M1

 

Note: Award M0 for statements such as “let n=k”.

Note: Subsequent marks after this M1 are independent of this mark and can be awarded.

 

considering Pk+1

Σr=1k+1cos2r-1θ=Σr=1kcos2r-1θ+cos2k+1-1θ        M1

=sin2kθ2sinθ +cos2k+1-1θ        A1

=sin2kθ+2cos2k+1θsinθ2sinθ 

=sin2kθ+sin2k+1θ+θ-sin2k+1θ-θ2sinθ         M1

 

Note: Award M1 for use of 2cosAsinB=sinA+B-sinA-B with A=2k+1θ and B=θ.

 

=sin2kθ+sin2k+2θ-sin2kθ2sinθ         A1

=sin2k+1θ2sinθ         A1

Pk+1 is true whenever Pk is true, P1 is true, so Pn is true for n+        R1

 

Note: Award the final R1 mark provided at least five of the previous marks have been awarded.

 

[8 marks]

Examiners report

[N/A]



Consider the equation 2z3-z*=i, where z=x+iy and x, y.

Find the value of x and the value of y.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

substituting z=x+iy and z*=x-iy        M1

2x+iy3-x-iy=i

2x+2iy=-y+i3-x      

equate real and imaginary:        M1

y=-2x  AND  2y=3-x       A1


Note: If they multiply top and bottom by the conjugate, the equations 6x-2x2+2y2=0 and 6y-4xy=3-x2+y2 may be seen. Allow for A1.


solving simultaneously:

x=-1, y=2  z=-1+2i      A1A1


[5 marks]

Examiners report

[N/A]



The following diagram shows the graph of y=arctan2x+1+π4 for x, with asymptotes at y=-π4 and y=3π4.

Describe a sequence of transformations that transforms the graph of y=arctan x to the graph of y=arctan2x+1+π4 for x.

[3]
a.

Show that arctanp+arctanqarctanp+q1-pq where p, q>0 and pq<1.

[4]
b.

Verify that arctan 2x+1=arctan xx+1+π4 for x, x>0.

[3]
c.

Using mathematical induction and the result from part (b), prove that Σr=1narctan12r2=arctannn+1 for n+.

[9]
d.

Markscheme

EITHER
horizontal stretch/scaling with scale factor 12


Note: Do not allow ‘shrink’ or ‘compression’


followed by a horizontal translation/shift 12 units to the left           A2


Note: Do not allow ‘move’


OR

horizontal translation/shift 1 unit to the left

followed by horizontal stretch/scaling with scale factor 12     A2


THEN

vertical translation/shift up by π4 (or translation through 0π4          A1
(may be seen anywhere)

 

[3 marks]

a.

let α=arctanp and β=arctanq        M1

p=tanα and q=tanβ        (A1)

tanα+β=p+q1-pq        A1

α+β=arctanp+q1-pq        A1

so arctanp+arctanqarctanp+q1-pq where p, q>0 and pq<1.       AG

 

[4 marks]

b.

METHOD 1

π4=arctan1 (or equivalent)        A1

arctanxx+1+arctan1=arctanxx+1+11-xx+11        A1

=arctanx+x+1x+1x+1-xx+1        A1

=arctan2x+1       AG

 

METHOD 2

tanπ4=1 (or equivalent)        A1

Consider arctan2x+1-arctanxx+1=π4

tanarctan2x+1-arctanxx+1

=arctan2x+1-xx+11+x2x+1x+1        A1

=arctan2x+1x+1-xx+1+x2x+1        A1

=arctan 1       AG

 

METHOD 3

tan arctan2x+1=tanarctanxx+1+π4

tanπ4=1 (or equivalent)        A1

LHS=2x+1        A1

RHS=xx+1+11-xx+1=2x+1        A1

 

[3 marks]

c.

let Pn be the proposition that  Σr=1narctan12r2=arctannn+1 for n+

consider P1

when n=1, Σr=11arctan12r2=arctan12=RHS and so P1 is true          R1

assume Pk is true, ie. Σr=1karctan12r2=arctankk+1 k+           M1

 

Note: Award M0 for statements such as “let n=k”.
Note: Subsequent marks after this M1 are independent of this mark and can be awarded.

 

consider Pk+1:

Σr=1k+1arctan12r2=Σr=1karctan12r2+arctan12k+12           (M1)

=arctankk+1+arctan12k+12        A1

=arctankk+1+12k+121-kk+112k+12           M1

=arctank+12k2+2k+12k+13-k        A1

 

Note: Award A1 for correct numerator, with (k+1) factored. Denominator does not need to be simplified

 

=arctank+12k2+2k+12k3+6k2+5k+2        A1

 

Note: Award A1 for denominator correctly expanded. Numerator does not need to be simplified. These two A marks may be awarded in any order

 

=arctank+12k2+2k+1k+22k2+2k+1=arctank+1k+2        A1

 

Note: The word ‘arctan’ must be present to be able to award the last three A marks

 

Pk+1 is true whenever Pk is true and P1 is true, so

Pn is true for for n+         R1

 

Note: Award the final R1 mark provided at least four of the previous marks have been awarded.
Note: To award the final R1, the truth of Pk must be mentioned. ‘Pk implies Pk+1’ is insufficient to award the mark.

 

[9 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.



Use mathematical induction to prove that  r = 1 n r ( r ! ) = ( n + 1 ) ! 1 , for n Z + .

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

consider  n = 1 .   1 ( 1 ! ) = 1 and  2 ! 1 = 1   therefore true for  n = 1       R1

Note: There must be evidence that n = 1 has been substituted into both expressions, or an expression such LHS=RHS=1 is used. “therefore true for n = 1 ” or an equivalent statement must be seen.

 

assume true for  n = k , (so that  r = 1 k r ( r ! ) = ( k + 1 ) ! 1 )       M1

Note: Assumption of truth must be present.

 

consider  n = k + 1

r = 1 k + 1 r ( r ! ) = r = 1 k r ( r ! ) + ( k + 1 ) ( k + 1 ) !       (M1)

 =  ( k + 1 ) ! 1 + ( k + 1 ) ( k + 1 ) !       A1

 =  ( k + 2 ) ( k + 1 ) ! 1        M1

Note: M1 is for factorising  ( k + 1 ) !

 

 =  ( k + 2 ) ! 1

= ( ( k + 1 ) + 1 ) ! 1

so if true for  n = k , then also true for  n = k + 1 , and as true for  n = 1  then true for all  n ( Z + )       R1

Note: Only award final R1 if all three method marks have been awarded.
Award R0 if the proof is developed from both LHS and RHS.

 

[6 marks]

Examiners report

[N/A]



Consider the equation z 4 + a z 3 + b z 2 + c z + d = 0 , where  a b c , d R and  z C .

Two of the roots of the equation are log26 and i 3 and the sum of all the roots is 3 + log23.

Show that 6 a + d + 12 = 0.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

i 3  is a root      (A1)

3 + lo g 2 3 lo g 2 6 ( = 3 + lo g 2 1 2 = 3 1 = 2 ) is a root       (A1)

sum of roots:  a = 3 + lo g 2 3 a = 3 lo g 2 3      M1

Note: Award M1 for use of a is equal to the sum of the roots, do not award if minus is missing.

Note: If expanding the factored form of the equation, award M1 for equating a to the coefficient of z 3 .

 

product of roots:  ( 1 ) 4 d           = 2 ( lo g 2 6 ) ( i 3 ) ( i 3 )       M1

                                                    = 6 lo g 2 6       A1

Note: Award M1A0 for  d = 6 lo g 2 6

 

6 a + d + 12 = 18 6 lo g 2 3 + 6 lo g 2 6 + 12

 

EITHER

= 6 + 6 lo g 2 2 = 0       M1A1AG

Note: M1 is for a correct use of one of the log laws.

OR

= 6 6 lo g 2 3 + 6 lo g 2 3 + 6 lo g 2 2 = 0        M1A1AG

Note: M1 is for a correct use of one of the log laws.

 

[7 marks]

Examiners report

[N/A]



Consider two events A and A defined in the same sample space.

Given that P ( A B ) = 4 9 ,  P ( B | A ) = 1 3  and P ( B | A ) = 1 6 ,

Show that P ( A B ) = P ( A ) + P ( A B ) .

[3]
a.

(i)     show that P ( A ) = 1 3 ;

(ii)     hence find P ( B ) .

[6]
b.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

METHOD 1

P ( A B ) = P ( A ) + P ( B ) P ( A B )    M1

= P ( A ) + P ( A B ) + P ( A B ) P ( A B )    M1A1

= P ( A ) + P ( A B )    AG

METHOD 2

P ( A B ) = P ( A ) + P ( B ) P ( A B )    M1

= P ( A ) + P ( B ) P ( A | B ) × P ( B )    M1

= P ( A ) + ( 1 P ( A | B ) ) × P ( B )

= P ( A ) + P ( A | B ) × P ( B )    A1

= P ( A ) + P ( A B )    AG

[3 marks]

a.

(i)     use P ( A B ) = P ( A ) + P ( A B ) and P ( A B ) = P ( B | A ) P ( A )      (M1)

4 9 = P ( A ) + 1 6 ( 1 P ( A ) )    A1

8 = 18 P ( A ) + 3 ( 1 P ( A ) )    M1

P ( A ) = 1 3    AG

(ii)     METHOD 1

P ( B ) = P ( A B ) + P ( A B )    M1

= P ( B | A ) P ( A ) + P ( B | A ) P ( A )    M1

= 1 3 × 1 3 + 1 6 × 2 3 = 2 9    A1

METHOD 2

P ( A B ) = P ( B | A ) P ( A ) P ( A B ) = 1 3 × 1 3 = 1 9    M1

P ( B ) = P ( A B ) + P ( A B ) P ( A )    M1

P ( B ) = 4 9 + 1 9 1 3 = 2 9    A1

[6 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.



The function  f is defined by  f ( x ) = a x + b c x + d , for  x R , x d c .

The function  g is defined by  g ( x ) = 2 x 3 x 2 , x R , x 2

Express  g ( x ) in the form  A + B x 2  where A, B are constants.

Markscheme

g ( x ) = 2 + 1 x 2      A1A1

[2 marks]

Examiners report

[N/A]



Solve the equation log3x=12log23+log34x3, where x>0.

Markscheme

attempt to use change the base                (M1)

log3x=log322+log34x3

attempt to use the power rule                (M1)

log3x=log32+log34x3

attempt to use product or quotient rule for logs, lna+lnb=lnab                (M1)

log3x=log342x3


Note:
The M marks are for attempting to use the relevant log rule and may be applied in any order and at any time during the attempt seen.


x=42x3

x=32x6

x5=132                (A1)

x=12                A1

 

[5 marks]

Examiners report

[N/A]



Consider the expansion of 8x3-12xn where n+. Determine all possible values of n for which the expansion has a non-zero constant term.

Markscheme

EITHER

attempt to obtain the general term of the expansion

Tr+1=Crn8x3n-r-12xr  OR  Tr+1=Cn-rn8x3r-12xn-r             (M1)


OR

recognize power of x starts at 3n and goes down by 4 each time             (M1)


THEN

recognizing the constant term when the power of x is zero (or equivalent)             (M1)

r=3n4  or  n=43r  or  3n-4r=0  OR  3r-n-r=0 (or equivalent)            A1

r is a multiple of 3 r=3,6,9, or one correct value of n (seen anywhere)             (A1)

n=4k, k+            A1


Note: Accept n is a (positive) multiple of 4 or n=4,8,12,
Do not accept n=4,8,12

Note: Award full marks for a correct answer using trial and error approach
showing n=4,8,12, and for recognizing that this pattern continues.

 

[5 marks]

Examiners report

There was a mixed response to this question. Candidates who used a trial and error approach were more successful in obtaining completely correct answers than those who tried to solve algebraically by finding the general term to form an equation relating n and r . Poor explanations were often noted in the trial and error approach. Candidates often failed to make progress after obtaining n=43r in the algebraic approach. Some candidates did not attempt this question.




Let fx=1+x for x>-1.

Show that f''x=-141+x3.

[3]
a.

Use mathematical induction to prove that fnx=-14n-12n-3!n-2!1+x12-n for n, n2.

[9]
b.

Let gx=emx, m.

Consider the function h defined by hx=fx×gx for x>-1.

It is given that the x2 term in the Maclaurin series for h(x) has a coefficient of 74.

Find the possible values of m.

[8]
c.

Markscheme

attempt to use the chain rule            M1

f'x=121+x-12         A1

f''x=-141+x-32         A1

=-141+x3         AG

 

Note: Award M1A0A0 for f'x=11+x or equivalent seen

  

[3 marks]

a.

let n=2

f''x=-141+x3=-1411!0!1+x12-2         R1

 

Note: Award R0 for not starting at n=2. Award subsequent marks as appropriate.

 

assume true for n=k, (so fkx=-14k-12k-3!k-2!1+x12-k)       M1

 

Note: Do not award M1 for statements such as “let n=k” or “n=k is true”. Subsequent marks can still be awarded.

 

consider n=k+1

LHS=fk+1x=dfkxdx            M1

=-14k-12k-3!k-2!12-k1+x12-k-1 (or equivalent)         A1

 

EITHER

RHS=fk+1x=-14k2k-1!k-1!1+x12-k-1 (or equivalent)         A1

=-14k2k-12k-22k-3!k-1k-2!1+x12-k-1        A1

 

Note: Award A1 for 2k-1!k-1!=2k-12k-22k-3!k-1k-2!=22k-12k-3!k-2!

 

=-14-14k-12k-12k-22k-3!k-1k-2!1+x12-k-1        A1

=-12-14k-12k-12k-3!k-2!1+x12-k-1

 

Note: Award A1 for leading coefficient of -14.

 

=12-k-14k-12k-3!k-2!1+x12-k-1        A1

 

OR

Note: The following A marks can be awarded in any order.

 

=-14k-12k-3!k-2!1-2k21+x12-k-1

=-12-14k-12k-12k-3!k-2!1+x12-k-1        A1

 

Note: Award A1 for isolating (2k1) correctly.

 

=-12-14k-12k-1!2k-2k-2!1+x12-k-1        A1

 

Note: Award A1 for multiplying top and bottom by (k1) or 2(k1).

 

=-14-14k-12k-1!k-1k-2!1+x12-k-1        A1

 

Note: Award A1 for leading coefficient of -14.

 

=-14k2k-1!k-1!1+x12-k-1        A1

 

=-14k+1-12k+1-3!k+1-2!1+x12-k+1=RHS

 

THEN

since true for n=2, and true for n=k+1 if true for n=k, the statement is true for all, n, n2  by mathematical induction           R1

 

Note: To obtain the final R1, at least four of the previous marks must have been awarded.

 

[9 marks]

b.

METHOD 1

hx=1+xemx

using product rule to find h'x        (M1)

h'x=1+xmemx+121+xemx         A1

h''x=m1+xmemx+121+xemx+121+xmemx-141+x3emx         A1

substituting x=0 into h''x       M1

h''0=m2+12m+12m-14=m2+m-14         A1

hx=h0+xh'0+x22!h''0+

equating x2 coefficient to 74       M1

h''02!=74 h''0=72

4m2+4m-15=0         A1

2m+52m-3=0

m=-52  or  m=32         A1

 

METHOD 2

EITHER

attempt to find f0, f'0, f''0        (M1)

fx=1+x12                    f0=1

f'x=121+x-12            f'0=12

f''x=-141+x-32      f''0=-14

fx=1+12x-18x2+         A1

 

OR

attempt to apply binomial theorem for rational exponents        (M1)

fx=1+x12=1+12x+12-122!x2

fx=1+12x-18x2+         A1

 

THEN

gx=1+mx+m22x2+        (A1)

hx=1+12x-18x2+1+mx+m22x2+        (M1)

coefficient of x2 is m22+m2-18         A1

attempt to set equal to 74 and solve             M1

m22+m2-18=74

4m2+4m-15=0          A1

2m+52m-3=0

m=-52  or  m=32         A1

 

METHOD 3

g'x=memx and g''x=m2emx        (A1)

hx=h0+xh'0+x22!h''0+

equating x2 coefficient to 74       M1

h''02!=74 h''0=72

using product rule to find h'x and h''x        (M1)

h'x=fxg'x+f'xgx

h''x=fxg''x+2f'xg'x+f''xgx         A1

substituting x=0 into h''x       M1

h''0=f0g''0+2g'0f'0+g0f''0

=1×m2+2m×12+1×-14  =m2+m-14         A1

4m2+4m-15=0          A1

2m+52m-3=0

m=-52  or  m=32         A1

 

[8 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.